1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maurinko [17]
3 years ago
8

A car travels 35 km west and 90 km north in two hours what is its average velocity?

Physics
1 answer:
blagie [28]3 years ago
8 0
Average velocity =  Total Displacement / Total time taken

Total displacement is the distance from starting to end point.

35km west then 90km north. When you will draw this and connect starting to end point. You will get a right angled triangle. 

So displacement = \sqrt{35^2+90^2}

= 96.56 km

So, Total displacement = 96.56 km

So, Average Velocity = 96.56 / 2  = 48.28 km/hr
You might be interested in
A 24.7-g bullet is fired from a rifle. It takes 2.73 × 10-3 s for the bullet to travel the length of the barrel, and it exits th
Gala2k [10]

Answer:

F_a_v_g=7093333.33N*s

Explanation:

The impulse or average force in classical mechanics is the variation in the linear momentum that a physical object experiences in a closed system. It is defined by the following equation:

F_a_v_g=m*\frac{\Delta v}{\Delta t}=m*\frac{v_2-v_1}{t_2-t_1}

Where:

m=mass\hspace{3}of\hspace{3}the\hspace{3}object

v_2=final\hspace{3}velocity\hspace{3}of\hspace{3}the\hspace{3}object\hspace{3}at\hspace{3}the\hspace{3}end\hspace{3}of\hspace{3}the\hspace{3}time\hspace{3}interval

v_1=initial\hspace{3}velocity\hspace{3}of\hspace{3}the\hspace{3}object\hspace{3}when\hspace{3}the\hspace{3}time\hspace{3}interval\hspace{3}begins.

t_2=final\hspace{3}time

t_1=initial\hspace{3}time

Asumming v1=0 and t1=0:

F_a_v_g=m* \frac{v_2}{t_2} =(24.7)*\frac{784}{2.73*10^{*3} } =7093333.333N*s

8 0
4 years ago
A vase falls from a windowsill 50.0 m above the sidewalk. How fast is the base moving when it hits the ground?
scZoUnD [109]

Answer:

The answer is A sorry if i'm wrong

Explanation:

6 0
3 years ago
Calculate the orbital period of a dwarf planet found to have a semimajor axis of a = 4.0x 10^12 meters in seconds and years.
padilas [110]

Explanation:

We have,

Semimajor axis is 4\times 10^{12}\ m

It is required to find the orbital period of a dwarf planet. Let T is time period. The relation between the time period and the semi major axis is given by Kepler's third law. Its mathematical form is given by :

T^2=\dfrac{4\pi ^2}{GM}a^3

G is universal gravitational constant

M is solar mass

Plugging all the values,

T^2=\dfrac{4\pi ^2}{6.67\times 10^{-11}\times 1.98\times 10^{30}}\times (4\times 10^{12})^3\\\\T=\sqrt{\dfrac{4\pi^{2}}{6.67\times10^{-11}\times1.98\times10^{30}}\times(4\times10^{12})^{3}}\\\\T=4.37\times 10^9\ s

Since,

1\ s=3.17\times 10^{-8}\ \text{years}\\\\4.37\times 10^9\ s=4.37\cdot10^{9}\cdot3.17\cdot10^{-8}\\\\4.37\times 10^9\ s=138.52\ \text{years}

So, the orbital period of a dwarf planet is 138.52 years.

3 0
3 years ago
A dad takes his kids to their school just 8.0 miles down the road but with traffic it takes him 30 minutes and the fastest he ca
VARVARA [1.3K]

Answer:C 24 mi/hr

Explanation:

8 0
3 years ago
Using energy considerations, calculate the average force (in N) a 62.0 kg sprinter exerts backward on the track to accelerate fr
slava [35]

Answer:

69.68 N

Explanation:

Work done is equal to change in kinetic energy

W = ΔK = Kf - Ki = \frac{1}{2} mv^{2} _{f}  - \frac{1}{2} mv^{2} _{i}

W = F_{total} .d

where m = mass of the sprinter

vf = final velocity

vi = initial velocity

W  = workdone

kf = final kinetic energy

ki = initial kinetic energy

d = distance traveled

Ftotal = total force

vf = 8m/s

vi= 2m/s

d = 25m

m = 60kg

inserting parameters to get:

W = ΔK = Kf - Ki = \frac{1}{2} mv^{2} _{f}  - \frac{1}{2} mv^{2} _{i}

F_{total} .d =\frac{1}{2} mv^{2} _{f}  - \frac{1}{2} mv^{2} _{i}

F_{total} = \frac{\frac{1}{2} mv^{2} _{f} - \frac{1}{2} mv^{2} _{i}}{d}

F_{total=} \frac{\frac{1}{2} X 62 X6^{2} -\frac{1}{2} X 62 X2^{2} }{25}

= 39.7

we know that the force the sprinter exerted F sprinter, the force of the headwind Fwind = 30N

F_{sprinter} = F_{total} + F_{wind}  = 39.7 + 30 = 69.68 N

7 0
3 years ago
Read 2 more answers
Other questions:
  • How does the kinetic energy of an object relate to its mass and velocity?
    14·1 answer
  • which is the of these their statements correctly describes a key difference between aerobic activity and anaerobic activity
    10·1 answer
  • In fission reactions, how must the binding energy per nucleon vary? a. The binding energy per nucleon remains constant as atomic
    10·2 answers
  • The motion of an object will not be changed if
    15·2 answers
  • how long will it take a sonar pulse that travels at the speed of 1,500m/s to return from a sunken ship that is at a depth of 3,7
    11·2 answers
  • An electron initially 3.00 m from a nonconducting infinite sheet of uniformly distributed charge is fired toward the sheet. The
    6·1 answer
  • 1) Beth rode the Flying Saucer ride at her favorite amusement park. The ride hung from a rod and swung back and forth while simu
    13·2 answers
  • The tenth pair of cranial nerves is the longest in the body and leaves by way of the jugular foramen. These nerves are called th
    8·1 answer
  • Joel uses a force of 50 Newtons to hold two weights 0.60 meters above his head. How much work is Joel doing on the weights?
    12·1 answer
  • A simple pendulum has time period of 2s. It is called second pendulum. Fimd the length of second pendulum on earth and moon(gm=g
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!