Answer:
3. both are true.
Explanation:
Energy increses with decrease in wavelenght.
For photoemission to occur, a threshold energy barrier must be broken.
Higher energy means more electrons will be emmited.
The electrons emmited will posses energy that is less than the incident energy by the value of the threshold energy.
So the higher the energy, the higher the energy possessed by the electrons.
Answer:
3.49 seconds
3.75 seconds
-43200 ft/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
Time the parachutist falls without friction is 3.19 seconds
Speed of the parachutist when he opens the parachute 31.32 m/s. Now, this will be considered as the initial velocity
So, time the parachutist stayed in the air was 3.19+0.3 = 3.49 seconds
Now the initial velocity of the last half height will be the final velocity of the first half height.
Since the height are equal
Time taken to fall the first half is 2.65 seconds
Total time taken to fall is 2.65+1.1 = 3.75 seconds.
When an object is thrown with a velocity upwards then the velocity of the object at the point to where it was thrown becomes equal to the initial velocity.
Magnitude of acceleration is -43200 ft/s²
Answer:
a) The minimum thickness of the oil slick at the spot is 313 nm
b) the minimum thickness be now will be 125 nm
Explanation:
Given the data in the question;
a) The index of refraction of the oil is 1.20. What is the minimum thickness of the oil slick at that spot?
t = λ/2n
given that; wavelength λ = 750 nm and index of refraction of the oil n = 1.20
we substitute
t = 750 / 2(1.20)
t = 750 / 2.4
t = 312.5 ≈ 313 nm
Therefore, The minimum thickness of the oil slick at the spot is 313 nm
b)
Suppose the oil had an index of refraction of 1.50. What would the minimum thickness be now?
minimum thickness of the oil slick at the spot will be;
t = λ/4n
given that; wavelength λ = 750 nm and index of refraction of the oil n = 1.50
we substitute
t = 750 / 4(1.50)
t = 750 / 6
t = 125 nm
Therefore, the minimum thickness be now will be 125 nm
Energy is released in the reaction
Explanation:
In a given where the energy of the products is greater than that of the reactants, we can infer that energy is released in the reaction.
This indicates that the reaction is an exothermic or exergonic reaction.
These reaction types are accompanied by release of energy.
- In an exothermic change energy is released to the surroundings.
- The surrounding becomes hotter at the end of the change.
- This applies in exergonic reaction which leaves a reaction having more energy than it originally started with.
Learn more:
Exothermic process brainly.com/question/10567109
#learnwithBrainly
Answer:
5
Explanation:
The d subshell has 5 orbitals, each capable of holding a maximum of two electrons. Hund's rule tells us that every orbital in a sub-level must first be singly occupied by electrons before any orbital is doubly occupied. Therefore five electrons will fill the five orbitals within the d subshell.