It looks like they are all units of measurement:
FOOT - POUND - NEWTON - METER
Explanation:
The nearest star to the Earth is the red dwarf star Proxima Centauri, at a distance of 4.218 light-years.
Light year is the unit of distance covered by the heavenly bodies. 1 light year is equal to :
So,
We need to convert 4.218 light-years barley corns.
Since, 1 barleycorn = 1/3 inch


So, the nearest star to the Earth is at a distance of
. Hence, this is the required solution.
Answer:
It's constant everywhere in its trajectory.
Explanation:
the projectile was launched with an initial velocity, the only acceleration that is affecting the projectile's velocity is gravity.
The acceleration of gravity is practically equal everywhere on earth, so during its trajectory, we have to take into consideration only the acceleration because of gravity.
This is only correct because the projectile was launched with an initial velocity and it's not accelerating from rest and then falls.
Answer:
The magnitude of the magnetic force acting on the wire is zero, because the magnetic field is parallel to the wire.
In fact, the magnetic force exerted by the magnetic field on the wire is
where I is the current in the wire, L the length of the wire, B the magnetic field intensity and the angle between the direction of B and the wire. In our problem, B and the wire are parallel, so the angle is and so , therefore the magnetic force is zero: F=0.
- Initial velocity (u) = 0 m/s [the car was at rest]
- Distance (s) = 80 m
- Time (t) = 10 s
- Let the magnitude of acceleration be a.
- By using the equation of motion,
we get,
<u>A</u><u>nswer:</u>
<u>The </u><u>magnitude</u><u> </u><u>of </u><u>its </u><u>acceleration</u><u> </u><u>is </u><u>1</u><u>.</u><u>6</u><u> </u><u>m/</u><u>s^</u><u>2</u><u>.</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.