So we end up with a total of four oxygen atoms for this calcium acetate unit and guys that truly it for this one.
The substance that conducts electricity is
dissolved in water.
So, option A is correct one.
When the sodium chloride dissolve in water , the sodium atoms and chlorine atoms separates under the presence of water molecules and exist as sodium cation and chloride anion . Now , they are free to move around in the water as positively and negatively charged ions . This separation of charge allows the solution to conduct electricity.
The solid
and solid sugar does not conduct electricity because it is not dissolve in water . Similarly, sugar dissolved in water does not conduct electricity .
to learn more about conduct electricity.
brainly.com/question/1458220
#SPJ4
It would be NaOH + HCl → <span>NaCl + H2O
</span>
NaOH is sodium hydroxide, which is a strong base. HCl is hydrochloric acid, which is a strong acid.
You have a strong base and a strong acid on the left side, however, at the result side, you end up with NaCl + H2O. Sodium chloride is simply table salt and H2O is just water, thus it has been neutralized.
B. White Dwarf.
<h3>Explanation</h3>
The star would eventually run out of hydrogen fuel in the core. The core would shrink and heats up. As the temperature in the core increases, some of the helium in the core will undergo the triple-alpha process to produce elements such as Be, C, and O. The triple-alpha process will heat the outer layers of the star and blow them away from the core. This process will take a long time. Meanwhile, a planetary nebula will form.
As the outer layers of gas leave the core and cool down, they become no longer visible. The only thing left is the core of the star. Consider the Chandrasekhar Limit:
Chandrasekhar Limit:
.
A star with core mass smaller than the Chandrasekhar Limit will not overcome electron degeneracy and end up as a white dwarf. Most of the outer layer of the star in question here will be blown away already. The core mass of this star will be only a fraction of its
, which is much smaller than the Chandrasekhar Limit.
As the star completes the triple alpha process, its core continues to get smaller. Eventually, atoms will get so close that electrons from two nearby atoms will almost run into each other. By Pauli Exclusion Principle, that's not going to happen. Electron degeneracy will exert a strong outward force on the core. It would balance the inward gravitational pull and prevent the star from collapsing any further. The star will not go any smaller. Still, it will gain in temperature and glow on the blue end of the spectrum. It will end up as a white dwarf.