I think everytime they swim away, the water pushes the enemy back, which makes the octopus go faster. Every action has an equal and opposite reaction. Hope this helps.
<h3>
Answer:</h3>
209.236 kg · m/s
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Physics</u>
<u>Momentum</u>
Momentum Formula: P = mv
- P is momentum (in kg · m/s)
- m is mass (in kg)
- v is velocity (in m/s)
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
m₁ = 87.2 kg
v₁ = 2.87 m/s
m₂ = 0.0520 kg
v₂ = 789 m/s
<u>Step 2: Find Momentums</u>
<em>Football Player</em>
- Substitute [MF]: P = (87.2 kg)(2.87 m/s)
- Multiply: P = 250.264 kg · m/s
<em>Bullet</em>
- Substitute [MF]: P = (0.0520 kg)(789 m/s)
- Multiply: P = 41.028 kg · m/s
<u>Step 3: Find difference</u>
- Define equation: P₁ - P₂
- Substitute: 250.264 kg · m/s - 41.028 kg · m/s
- Subtract: 209.236 kg · m/s
Answer:
1.31498 kg
0.72050 s
0.72050 s
Explanation:
m = Mass of block
g = Acceleration due to gravity = 9.81 m/s²
k = Spring constant = 100 N/M
x = Displacement = 0.129 m
The force balance is

The mass of the block is 1.31498 kg
Time period is given by

The period of oscillations is 0.72050 s
The time period does not depend on the acceleration due to gravity. It varies with the mass and the spring constant.
Hence, the time period would be the same
Answer: Can I get a picture???
Answer:
Explanation:
Orbital radius of satellite A , Ra = 6370 + 6370 = 12740 km
Orbital radius of satellite B , Rb = 6370 + 19110 = 25480 km
Orbital potential energy of a satellite = - GMm / r where G is gravitational constant , M is mass of the earth and m is mass of the satellite
Orbital potential energy of a satellite A = - GMm / Ra
Orbital potential energy of a satellite B = - GMm / Rb
PE of satellite B /PE of satellite A
= Ra / Rb
= 12740 / 25480
= 1 / 2
b ) Kinetic energy of a satellite is half the potential energy with positive value , so ratio of their kinetic energy will also be same
KE of satellite B /KE of satellite A
= 1 / 2
c ) Total energy will be as follows
Total energy = - PE + KE
- P E + PE/2
= - PE /2
Total energy of satellite B / Total energy of A
= 1 / 2
Satellite B will have greater total energy because its negative value is less.