Answer:
D. All of the above.
Explanation:
Iron has a constant density, which means 2-kg block will have twice as much volume as 1-kg block; therefore, choice A is correct.
Inertia is defined by the equation F = ma: it measures how hard it is to change the motion of an object. The inertia of the the 1-kg solid iron is
F = 1a,
And the inertia of the 2-kg solid iron is
F = 2a,
which is twice as much that of the 1-kg block; therefore, choice B is correct.
The mass of the 2-kg block is twice as much as that of the 1-kg block; therefore, choice C is also correct.
Thus, all of the choices are correct (D).
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Answer:
a = 9.8 m/s²
Explanation:
Acceleration due to gravity on Earth is constant, which is 9.8 m/s²
Answer:
did you ever get the answer
The frictional force is always act in opposite direction of motion. if wheels is moving in +x axis or right then the f force is act in -x or left