The angular momentum is defined as,

Acording to this text we know for conservation of angular momentum that

Where
is initial momentum
is the final momentum
How there is a difference between the stick mass and the bug mass, we define that
Mass of the bug= m
Mass of the stick=10m
At the point 0 we have that,

Where l is the lenght of the stick which is also the perpendicular distance of the bug's velocity
vector from the point of reference (O), and ve is the velocity
At the end with the collition we have

Substituting




Applying conservative energy equation we have


Replacing the values and solving

Substituting
l=\frac{13}{0.54(9.8)}

The energy stored in a capacitor is given by:

where
U is the energy
C is the capacitance
V is the potential difference
The capacitor in this problem has capacitance

So if we re-arrange the previous equation, we can calculate the potential V that should be applied to the capacitor to store U=1.0 J of energy on it:
It'll be my pleasure to analyze the circuit, describe my analysis in detail,
and give you a clear, precise, and accurate answer.
As soon as you let me see the circuit diagram, with values marked on
all of its components and power sources.
Answer:
The workdone is
Explanation:
From the question we are told that
The potential difference is 
Generally the charge on
is 
Generally the workdone is mathematically represented as

=>
=>