Answer:
The magnitude of the force, B = 5 Tesla, Up (North) direction
Explanation:
Magnetic force F= Eq where Electric field, E = 750 NC
and charge, q = -70 μC = -7 ×
C
F = 750 × -7 ×
F = 0.0525
But F = qvB; B = 
where B is the magnetic field
= 0.0525 ÷ ( -7 ×
× 30)
B = 5.0 Teslas
The force on a negative charge is in exactly the opposite direction to that on a positive charge.
Hence the direction of the charge is up (North).
Answer:
Explanation:
Distance between plates d = 2 x 10⁻³m
Potential diff applied = 5 x 10³ V
Electric field = Potential diff applied / d
= 5 x 10³ / 2 x 10⁻³
= 2.5 x 10⁶ V/m
This is less than breakdown strength for air 3.0×10⁶ V/m
b ) Let the plates be at a separation of d .so
5 x 10³ / d = 3.0×10⁶ ( break down voltage )
d = 5 x 10³ / 3.0×10⁶
= 1.67 x 10⁻³ m
= 1.67 mm.
Thermo-Electrochemical converter (UTEC) is a thermodynamic cycle that does not account for the Carnot Efficiency.
The Carnot cycle is a hypothetical cycle that takes no account of entropy generation. It is assumed that the heat source and heat sink have perfect heat transfer. The working fluid also remains in the same phase, as opposed to the Rankine cycle, in which the fluid changes phase. A practical thermodynamic cycle, such as the Rankine cycle, would achieve at most 50% of the Carnot cycle efficiency under similar heat source and heat sink temperatures.
<h3>What is Thermo-Electrochemical converter?</h3>
In a two-cell structure, a thermo-electrochemical converter converts potential energy difference during hydrogen oxidation and reduction to heat energy.
It employs the Ericsson cycle, which is less efficient than the Carnot cycle. In a closed system, it converts heat to electrical energy. There are no external input or output devices.
This means there will be no mechanical work to be done, as well as no exhaust. As a result, Carnot efficiency is not taken into account in this cycle. Carnot efficiency is accounted for by other options such as turbine and engine.
Learn more about Thermo-Electrochemical converter here:
brainly.com/question/13040188
#SPJ4
Answer:
the glass contains air bubbles that expands and contracts as the glass is heated or froze. when they expand they may cause the glass to break or even explode
(Direction) for the fact that it will continue having the momentum at the constant speed in which the engines turned off.