Answer:
The new partial pressures after equilibrium is reestablished:
Explanation:
At equilibrium before adding chlorine gas:
Partial pressure of the
Partial pressure of the
Partial pressure of the
The expression of an equilibrium constant is given by :
At equilibrium after adding chlorine gas:
Partial pressure of the
Partial pressure of the
Partial pressure of the
Total pressure of the system = P = 263.0 Torr
At initail
(13.2) Torr (32.8) Torr (13.2) Torr
At equilbriumm
(13.2-x) Torr (32.8-x) Torr (217.0+x) Torr
Solving for x;
x = 6.402 Torr
The new partial pressures after equilibrium is reestablished:
Answer:
Boiling point for the solution is 100.237°C
Explanation:
We must apply colligative property of boiling point elevation
T° boiling solution - T° boiling pure solvent = Kb . m
m = molalilty (a given data)
Kb = Ebulloscopic constant (a given data)
We know that water boils at 100°C so let's replace the information in the formula.
T° boiling solution - 100°C = 0.512 °C/m . 0.464 m
T° boiliing solution = 0.512 °C/m . 0.464 m + 100°C → 100.237 °C
It would be a physical change. It’s still water just in a different physical form. If it was a chemical change, it would no longer be water. For example, when the ice melts back into water...it’s still water.
I believe that the choices for this question are:
C2H4O2, C4H8O4 CH2O, C6H12O6 C3H6O3, C6H12O6 C2H4O2, C6H12O6
The answer to this based on the molar masses given is:
C2H4O2, C6H12O6
To prove calculate the molar mass:
C2H4O2 = 2*12 + 4*1 + 2*16 = 60
C6H12O6 = 6*12 + 12*1 + 6*16 = 180
Answer with Explanation:
This is expirament based Q
1) Bring a magnet near ... the Cobalt will come out of te mixture and get attracted to magnet
2) Disolve it in a solution of ethanol. The Idoine gets dissolve and the other doesnt.
Hope im right!!