Answer:
V₂ = 1.5 L
Explanation:
Given data:
Initial volume of balloon = 1.76 L
Initial temperature = 295 K
Final temperature = 253.15 K
Final volume = ?
Solution:
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 1.76 L ×253.15 K / 295 K
V₂ = 445.54 L.K /295 K
V₂ = 1.5 L
- True
- True
- True
- False
- False
- False
- False
- True
- False
- False
- False
- True
- False
- True
- False
After looking at answers I agree with the statement Chemistry is fun.
So the question ask on what solute are present in an aqueous solution on a certain element base on the data you have given. So base on that data i came up with a chemical expression of HCIO, H+ and CIO-. I hope you are satisfied with my answer
Answer:
0.24M
Explanation:
The equation for the reaction is given below:
H2SO4 + 2KOH → K2SO4 + 2H2O
From the equation above, we obtained the following information:
nA (mole of acid) = 1
nB (mole of base) = 2
Data obtained from the question include:
Va (volume of the acid) = 12mL
Ca (concentration of the acid) =?
Vb (volume of the base) = 36mL
Cb (concentration of the base) = 0.16 M
The Ca (concentration of the acid) can be obtained as follow:
CaVa/CbVb = nA/nB
Ca x 12 / 0.16 x 36 = 1 /2
Cross multiply to express in linear form as shown below:
Ca x 12 x 2 = 0.16 x 36
Divide both side by 12 x 2
Ca = 0.16 x 36/ 12 x 2
Ca = 0.24M
Therefore, the concentration of the acid is 0.24M