Potential energy is defined by formula
here
m = mass
g = acceleration due to gravity
h = height
Now here two different stones are located at same height
while mass of stone A is twice that of stone B
so here we can say potential energy of A is
Similarly potential energy of B is
now if we take the ratio of two energy
so we can say potential energy of stone A is two times the potential energy of B
Explanation:
Given that,
A ball is tossed straight up with an initial speed of 30 m/s
We need to find the height it will go and the time it takes in the air.
At its maximum height, its final speed, v = 0 and it will move under the action of gravity. Using equation of motion :
v = u +at
Here, a = -g
v = u -gt
i.e. u = gt
So, the time for upward motion is 3.06 seconds. It means that it will in air for 3.06×2 = 6.12 seconds
Let d is the maximum distance covered by it.
Putting all values
Hence, it will go to a height of 45.91 m and it will in the air for 6.12 seconds.
Answer:
147 J
Explanation:
The energy transferred to potential energy is :
U = m * g * h = (5 kg) * (9.8 m/s^2) * (3 m) = 147 J
Given Information:
Number of turns = N = 1130 turns
Length of solenoid = L = 0.430 m
Magnetic field = B = 1.0x10⁻⁴ T
Required Information:
Current = I = ?
Answer:
I = 0.0302 A
Explanation:
The current flowing in the solenoid winding can be found using
I = BL/μ₀N
Where μ₀ is the permeability of free space, N is the number of turns, B is the magnetic field and L is the length of solenoid
I = 1.0x10⁻⁴*0.430/4πx10⁻⁷
*1130
I = 0.0302 A
or
I = 30.28 mA
Because its expose to the wires inside that could electrify you.