Answer:
Mechanical advantage = 2.875
Explanation:
Given:
A diagram is shown below for the above scenario.
Length of ramp (Effort arm) = 4.6 m
Height of truck bed ( Resistance length) = 1.6 m
Mechanical advantage (MA) is the ratio of effort arm and resistance length.
So, mechanical advantage is given as,

Answer:
50 lb
Explanation:
Given,
The weight of astronaut's life support backpack on Earth (w) = 300 lb
Acceleration due to gravity on Earth (g) = 9.8 m/s²
Acceleration due to gravity on Moon = g'

We know that weight of an object on Earth is,


Similarly, weight on Moon will be




Thus the astronaut's life support backpack will weigh 50 lb on Moon.
we know that center of mass is given as
r = (m₁
+ m₂
)/(m₁ + m₂)
taking derivative both side relative to "t"
dr/dt = (m₁ d
/dt + m₂ d
/dt)/(m₁ + m₂)
v = (m₁
+ m₂
)/(m₁ + m₂)
taking derivative again relative to "t" both side
dv/dt = (m₁ d
/dt + m₂ d
/dt)/(m₁ + m₂)
a= (m₁
+ m₂
)/(m₁ + m₂)
Answer:
The earthquake occurred at a distance of 1122 km
Explanation:
Given;
speed of the P wave, v₁ = 8.5 km/s
speed of the S wave, v₂ = 5.5 km/s
The distance traveled by both waves is the same and it is given as;
Δx = v₁t₁ = v₂t₂
let the time taken by the wave with greater speed = t₁
then, the time taken by the wave with smaller speed, t₂ = t₁ + 1.2 min, since it is slower.
v₁t₁ = v₂t₂
v₁t₁ = v₂(t₁ + 1.2 min)
v₁t₁ = v₂(t₁ + 72 s)
v₁t₁ = v₂t₁ + 72v₂
v₁t₁ - v₂t₁ = 72v₂
t₁(v₁ - v₂) = 72v₂

The distance traveled is given by;
Δx = v₁t₁
Δx = (8.5)(132)
Δx = 1122 km
Therefore, the earthquake occurred at a distance of 1122 km