1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crank
3 years ago
5

Two charged objects, A and B, are exerting an electric force on each other. What will happen if the charge on A is increased?

Physics
1 answer:
ozzi3 years ago
6 0

Answer: The forces acting on both of them will increase in magnitude.

Explanation:

According to Coulomb's law, the electrostatic force between two bodies is proportional to the product of their two charges. If the charge on A is increased this product increases in size (it must have been non-zero to begin with, since there was a force between them at first). Thus, the force between them rises.

You might be interested in
Which is a heterogeneous mixture?
lesya [120]

Answer:

eat my gunterxtrappin

Explanation:

7 0
3 years ago
supose at 20 degree celsius the resistance of Tungsten thermometer is 154.9. WHen placed in a particular solution , the resistan
saw5 [17]

Answer:

T₂ = 95.56°C

Explanation:

The final resistance of a material after being heated is given by the relation:

R' = R(1 + αΔT)

where,

R' = Final Resistance = 207.4 Ω

R = Initial Resistance = 154.9 Ω

α = Temperature Coefficient of Resistance of Tungsten = 0.0045 °C⁻¹

ΔT = Change in Temperature = ?

Therefore,

207.4 Ω = 154.9 Ω[1 + (0.0045°C⁻¹)ΔT]

207.4 Ω/154.9 Ω = 1 + (0.0045°C⁻¹)ΔT

1.34 - 1 = (0.0045°C⁻¹)ΔT

ΔT = 0.34/0.0045°C⁻¹

ΔT = 75.56°C

but,

ΔT = Final Temperature - Initial Temperature

ΔT = T₂ - T₁ = T₂ - 20°C

T₂ - 20°C = 75.56°C

T₂ = 75.56°C + 20°C

<u>T₂ = 95.56°C</u>

7 0
3 years ago
In an RC circuit, what fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for
4vir4ik [10]

Answer:

The  fraction fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for 3.0 time constants is  

      k  = 0.903

Explanation:

From the question we are told that

     The time  constant  \tau  =  3

The potential across the capacitor can be mathematically represented as

     V  =  V_o  (1 -  e^{- \tau})

Where V_o is the voltage of the capacitor when it is fully charged

    So   at  \tau  =  3

     V  =  V_o  (1 -  e^{- 3})

     V  =  0.950213 V_o

   Generally energy stored in a capacitor is mathematically represented as

             E = \frac{1}{2 } * C  * V ^2

In this equation the energy stored is directly proportional to the the square of the potential across the capacitor

Now  since capacitance is  constant  at  \tau  =  3

        The  energy stored can be evaluated at as

         V^2 =  (0.950213 V_o )^2

       V^2 =  0.903  V_o ^2

Hence the fraction of the energy stored in an initially uncharged capacitor is  

      k  = 0.903

4 0
3 years ago
A particle makes 800 revolution in 4 minutes of a circle of 5cm. Find
vladimir1956 [14]

Answer:

i) The period of the particle is 0.3 seconds

ii) The angular velocity is approximately 20.94 rad/s

iii) The linear velocity is approximately 1.047 m/s

iv) The centripetal acceleration is approximately 6.98 m/s²

Explanation:

The given parameters are;

The number of revolution of the particle, n = 800 revolution

The time it takes the particle to make 800 revolutions = 4 minutes

The dimension of the circle = 5 cm = 0.05 m

Given that the dimension of the circle is the radius of the circle, we have;

i) The period of the particle, T = The time to complete one revolution

T = 1/(The number of revolutions per second)

∴ T = 1/(800 rev/(4 min × 60 s/min)) = 3/10 s

The period, T = 3/10 seconds = 0.3 seconds

ii) The angular velocity, ω = Angle covered/(Time)

800 revolutions in 4 minutes = Angle of (800 × 2·π) in 4 minutes

∴ ω = (800 × 2·π)/(4 × 60) = 20·π/3

The angular velocity, ω = 20·π/3 rad/s ≈ 20.94 rad/s

iii) The linear velocity, v = r × ω

∴ The linear velocity, v = 0.05 m × 20·π/3 rad/s = π/3 m/s ≈ 1.047 m/s

iv) The centripetal acceleration, a_c = v²/r

∴ The centripetal acceleration, a_c = (π/3)²/(0.05) = 20·π/9

The centripetal acceleration, a_c = 20·π/9 m/s² ≈ 6.98 m/s²

4 0
3 years ago
A bird is flying with through the air with a speed of 18.0 m/s. As it flies, it holds in its claws a 2 kg fish that it
Serggg [28]
It’s started with wing
8 0
3 years ago
Read 2 more answers
Other questions:
  • Michael is the captain of his school’s soccer team. What skill does Michael exhibit when he decides which player will take the p
    12·1 answer
  • Consider the wave function y(x)-Find the probability of fi in the range -a
    10·1 answer
  • Can you use a machine to gain both force and speed at the same time? explain.
    8·1 answer
  • During both the vernal equinox and _____________, there is an equal amount of night and day.
    15·2 answers
  • A computer monitor uses 200 W of power. How much energy does it use in 10 seconds?
    9·2 answers
  • The 1st Law of Thermodynamics is a statement about (A) Temperatures scales (B) Whether a process can proceed in a specific manne
    11·1 answer
  • While trees are not the largest level in the pyramid of numbers, they are still the base for both the pyramids of biomass and py
    11·1 answer
  • Sharks are most common near coral reefs, because there are more fish there to eat.
    13·2 answers
  • PLEASE PLEASE PLEASE HELP FAST!!!!!!!!!!!!!!!
    5·1 answer
  • A physicist wants to estimate the rate of emissions of alpha particles from a certain source. He counts 400 emissions in 80 seco
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!