Answer:
=1 2/3
Step-by-step explanation:
Remove parentheses so it’s 10q-12q-7q=15
Collect the terms so it’s -9q=15 then divide both sides by -9
Answer:
Since there are six possible outcomes, the probability of obtaining any side of the die is 1/6. The probability of rolling a 1 is 1/6, the probability of rolling a 2 is 1/6, and so on.
let's first off convert those mixed fractions to improper fractions, then get their difference.
![\bf \stackrel{mixed}{1\frac{1}{2}}\implies \cfrac{1\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{3}{2}}~\hfill \stackrel{mixed}{2\frac{1}{10}}\implies \cfrac{2\cdot 10+1}{10}\implies \stackrel{improper}{\cfrac{21}{10}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{21}{10}-\cfrac{3}{2}\implies \stackrel{\textit{using the LCD of 10}}{\cfrac{(1)21-(5)3}{10}}\implies \cfrac{21-15}{10}\implies \cfrac{6}{10}\implies \cfrac{3}{5}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B3%7D%7B2%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B1%7D%7B10%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%2010%2B1%7D%7B10%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B21%7D%7B10%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7B21%7D%7B10%7D-%5Ccfrac%7B3%7D%7B2%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Busing%20the%20LCD%20of%2010%7D%7D%7B%5Ccfrac%7B%281%2921-%285%293%7D%7B10%7D%7D%5Cimplies%20%5Ccfrac%7B21-15%7D%7B10%7D%5Cimplies%20%5Ccfrac%7B6%7D%7B10%7D%5Cimplies%20%5Ccfrac%7B3%7D%7B5%7D)
now, the original amount, 3/2, if that is the 100%, what is 3/5 off of it in percentage?

Answer:
(A) 4.03 x 10^14
Step-by-step explanation:
403,000,000,000,000
Scientific notation is of the form
a * 10 ^b
where a is a number from 1 to a number less than 10
Put the decimal in the number
403,000,000,000,000.
We need to move the decimal 14 places to the left to get the number to be between 1 and 10
4.03000000000000 so the b is 14
Since we moved it to the left b is positive
We can drop the extra zeros at the end (after the last nonzero digit)
4.03 *10^14