Answer:
manage your weight better, have stronger bones, have lower blood pressure, less risk of a heart attack, etc.
Answer:
200 km/hr
Explanation:
Since he goes 80km per hour, multiply this by 2.5 or two and a half hours.
80 x 2.5 = 200 km/hr.
What is the value of the resistors? There are many types of resistors with different values for how much resistance they provide
Edit: My bad. Where are the resistors located
Answer:
Planets are bodies of rock or gas that are named after ancient gods.
Asteroids and Meteoroids are made of rock or metal, which often collide with Earth.
The terrestrial planets are more like the Earth.
The Juno spacecraft is exploring the planet Jupiter.
Explanation:
The planets and other stars in our solar system were similarly baptized. The planets were named after ancient gods. Other stars were baptized with names chosen by scientists or according to their peculiarity. Most of the planets were baptized by ancient Chinese astronomers, and later, by Babylonians. But over time different civilizations changed the names of the planets.
An asteroid is a smaller body in the solar system, usually on the order of just a few hundred kilometers. Meteoroids, in turn, are fragments of rocks that form from comets and asteroids. The luminous effect is produced when fragments of celestial bodies ignite in contact with the Earth's atmosphere due to friction. Both asteroids and meteoroids are made of rock or metal, which often collide with Earth.
The terrestrial planets are the most similar to the earth. These planets are those formed mainly by rocks and metals, have a solid surface without the incidence of rings, as is the case with Mercury, Venus and Mars.
The Juno spacecraft is exploring the planet Jupiter. This probe has already given us several unprecedented discoveries about the largest gas giant in the Solar System, in addition to sending us sensational images showing the complex and beautiful atmosphere of the planet.
Jane's mechanical energy at any time is

where

is the potential energy, while

is the kinetic energy.
Initially, Jane is on the ground, so the altitude is h=0 and the potential energy is zero: U=0. She's running with speed v, so she has kinetic energy only:

Then she grabs the vine, and when she reaches the maximum height h, her speed is zero: v=0, and so the kinetic energy becomes zero: K=0. So now her mechanical energy is just potential energy:

But E must be conserved, so the initial kinetic energy must be equal to the final potential energy:

from which we can find h, the maximum height Jane can reach: