Answer:
1,081.1 units of heparin should be given to 298 lb person.
Explanation:
We are given:
Weight of the person = 298 lb = 135.143 kg
Conversion factor used:
1 lb = 0.4535 kg
Number of unit of heparin to be given in an hour = 8.0 units/kg
Number of units given to the patient weighing 135.143 kg :

1,081.1 units of heparin should be given to 298 lb person.
Answer:
grams H₂O produced = 8.7 grams
Explanation:
Given 2C₂H₆(g) + 7O₂(g) => 4CO₂(g) + 6H₂O(l)
7g 18g ?g
Plan => Convert gms to moles => determine Limiting reactant => solve for moles water => convert moles water to grams water
Moles Reactants
moles C₂H₆ = 7g/30g/mol = 0.233mol
moles O₂ = 18g/32g/mol = 0.563mol
Limiting Reactant => (Test for Limiting Reactant) Divide mole value by respective coefficient of balanced equation; the smaller number is the limiting reactant.
moles C₂H₆/2 = 0.233/2 = 0.12
moles O₂/7 = 0.08
<u><em>Limiting Reactant is O₂</em></u>
Moles and Grams of H₂O:
Use Limiting Reactant moles (not division value) to calculate moles of H₂O.
moles H₂O = 6/7(moles O₂) = 6/7(0.562) moles H₂O = 0.482 mole H₂O yield
grams H₂O = (0.482mol)(18g·mol⁻¹) = 8.7 grams H₂O
The amount of matter in an object is consisted to be MASS .
The termination step of the free-radical chlorination of methane is the most stable one among all three steps.
The free-radical substitution reaction between chlorine and methane features three major steps:
Initiation, during which chlorine molecules undergo homolytic fission to produce chlorine free radicals. Ultraviolet radiations are typically applied to supply the energy required for breaking the chlorine-chlorine single bonds. The initiation step is thus <em>endothermic</em>.
Propagation, a process in which chlorine free radicals react with methane molecules and remove a hydrogen atom from the alkane to produce hydrogen chloride and an alkyl radical e.g.,
. The carbon-containing free radical would react with chlorine molecules to produce chloromethane and yet another chlorine free radical. This process can well repeat itself to chlorinate a significant number of methane molecules.
Termination. Free radicals combine to produce molecules. For example, two chlorine free radicals would combine to produce a chlorine molecule, whereas two alkyl free radicals would combine to produce an alkane with two-carbon atoms in its backbone.
Chemical processes that increase the stability of a substance reduces its chemical potential energy. Energy conserves, thus such processes would also release energy equal to the potential energy lost in quantity. Free radicals are unstable and- as seen in the propagation step- compete readily with neutral molecules for their electrons. The propagation step keeps the number of free radicals constant and is therefore more exothermic than the initiation step. The termination step reduces the number of free radicals, increase the stability of the system by the greatest extent, and is therefore the most exothermic step among the three.