Answer:
i'm not really sure i cant help today try a different question that i can help u with
Explanation:
When temperature of liquid is increased, liquid gets thinner and thinner and hence it's viscosity decreases.
Density = mass/volume.
As we increase the temperature, volume of the liquid starts to increase but mass of the liquid remains constant. As a result, density of liquid decreases.
Hope this helps!
Chemical change
Hope this helps!
Larger molecules experience larger dispersion forces due to more distance of valance of electrons from the nucleus.
<h2>Cause of stronger dispersion force</h2>
Larger and heavier atoms and molecules have stronger dispersion forces than smaller and lighter ones because in a larger atom or molecule, the valence electrons are farther from the nuclei than in a smaller atom or molecule.
They are less tightly held to the nuclear charge present in the nucleus and can easily form temporary dipoles so we can conclude that larger molecules experience larger dispersion forces due to more distance of valance of electrons from the nucleus.
Learn more about London dispersion force here: brainly.com/question/1454795
Learn more: brainly.com/question/26139894
Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol