Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.
That would be correct as stated.
Answer
HCl+NaOH=NaCl+H2O (NaCl+H20)=the product
is a double substitution reaction
so the product ,one of them will be or Nacl or Water(H2O)
Hey there!
Values Ka1 and Ka2 :
Ka1 => 8.0*10⁻⁵
Ka2 => 1.6*10⁻¹²
H2A + H2O -------> H3O⁺ + HA⁻
Ka2 is very less so I am not considering that dissociation.
Now Ka = 8.0*10⁻⁵ = [H3O⁺] [HA⁻] / [H2A]
lets concentration of H3O⁺ = X then above equation will be
8.0*10−5 = [x] [x] / [0.28 -x
8.0*10−5 = x² / [0.28 -x ]
x² + 8.0*10⁻⁵x - 2.24 * 10⁻⁵
solve the quardratic equation
X =0.004693 M
pH = -log[H⁺]
pH = - log [ 0.004693 ]
pH = 2.3285
Hope that helps!
Answer:
16.56g.
Explanation:
You need to compare the number of coefficient of the reaction product to find how much water produced. The reaction formula will produce 6 carbon dioxide(CO2) and 6 water (H2O).
If the reaction produces 0.92 moles of carbon dioxide, then the amount of water produced in moles will be: 0.92 moles * (6/6)= 0.92 moles
The molar mass of water is 18g/mol, so the calculation of moles to mass will be: 0.92 moles * (18g/mol)= 16.56g.