We can calculate the length of each spring by using the relationship:

where
F is the force applied to the spring
k is the spring constant
x is the length of the spring (measured with respect to its rest position)
Re-arranging the equation, we have

The force applied to both spring is F=60 N. Spring A has spring constant of k=4 N/m, therefore its length with respect to its rest position is

Spring B has spring constant of k=5 N/m, so its length with respect to its rest position is

Therefore, the correct answer is
<span>
D.Spring A is 3 m longer than spring B because 15 – 12 = 3.</span>
Current at all points of a series circuit must be the same, because there's no place in the circuit where electrons are being manufactured, and no place where they're leaking out and falling on the floor. The nimber of electrons that leaves the loop is the same number that entered it.
I'm not sure what is nmeant by "p.d. remains different" .
The amount of C-14 at time t is

where
N₀ = inital amount of C-14
t = years
K = 0.0001 = 10⁻⁴
When the skull was discovered, the amount of C-14 contained 43% of N₀.
Therefore

Answer:
The age of the skull s 8440 years (nearest integer)
Answer:
Hello stranger I don't know
Explanation:
._____.
The identity of the element is determined by the number of protons
in the nucleus of each atom.
If two atoms have the same number of protons in their nucleii
(nucleuses) but different numbers of neutrons, then they're both
atoms of the same element, but their atomic masses are different,
and they're called isotopes of the element.
In the picture, atoms 'A' and 'B' each have 3 protons in the nucleus,
so they're both atoms of Lithium. But the number of neutrons is
different, so 'A' and 'B' are different isotopes of Lithium.
Also in the picture, atoms 'C' and 'D' each have 4 protons in the
nucleus, so they're both atoms of Beryllium. But the number of
neutrons is different, so 'C' and 'D' are different isotopes of Beryllium.