Answer:
When secondary bile salts (or acids) lack a OH, they are reabsorbed
Explanation:
The lost of a hydroxyl group (OH) in the bile salts structure means less hydro solubility. Thus, they are not eliminated, conversely, the are reabsorbed for intestine and they go back to the liver.
I hope my answer helps
Answer:
104.969 amu.
Explanation:
From the question given above, the following data were obtained:
Isotope A:
Mass of A = 107.977 amu
Abundance (A%) = 0.1620%
Isotope B:
Mass of B = 106.976 amu
Abundance (B%) = 1.568%
Isotope C:
Mass of C = 105.974 amu
Abundance (C%) = 47.14%
Isotope D:
Mass of D = 103.973 amu
Abundance (D%) = 51.13%
Average atomic mass =?
The average atomic mass of the element can be obtained as follow:
Average atomic mass = [(Mass of A × A%) /100] + [(Mass of B × B%) /100] + [(Mass of C × C%) /100] + [(Mass of D × D%) /100]
Average atomic mass = [(107.977 × 0.1620)/100] + [(106.976 × 1.568)/100] + [(105.974 × 47.14)/100] + [(103.973 × 51.13)/100]
= 0.175 + 1.677 + 49.956 + 53.161
= 104.969 amu
Therefore, the average atomic mass of the element is 104.969 amu.
The correct answer is D. Because sulfur has 6 electrons in its outermost shell
Answer:
A.
Carbon dioxide
Explanation:
In a tissue that metabolizes glucose via the pentose phosphate pathway, C-1 of glucose would be expected to end up principally in Carbon dioxide
Answer:
<h3>2Al+ Fe2O3 gives 2Fe + Al2O3. The given reaction is a redox reaction. As oxidation and reduction are taking place simultaneously.</h3>
Explanation:
like this...Identify oxidation and reduction with their agents:
<h3>•2Al+ Fe2O3 →2Fe + Al2O3</h3>
<h3>•Fe2O3 is reduced to Fe whereas Al is oxidized to Al2O3</h3>
<h3>In the above reaction:</h3>
<h3>Oxidizing agent:Fe2O3</h3>
<h3>Reducing agent:Al</h3>
I hope it's help you (◠‿・)—☆