Answer:
their all small and arent considered planets
hope this could help
Explanation:
The balanced chemical equation for the reaction is:
2NaOH(aq) + FeCl₂(aq) --> 2NaCl(aq) + Fe(OH)₂(s)
<h3>What is a chemical equation? </h3>
Chemical equations are representations of chemical reactions using symbols and formula of the reactants and products.
The reactants are located on the left side while the products are located on the right side.
Reactants —> Products
The balancing of chemical equations follows the law of conservation of matter which states that matter can neither be created nor destroyed during a chemical reaction but can be transferred from one form to another.
<h3>How to write the balanced equation </h3>
Sodium hydroxide => NaOH
Iron (II) chloride => FeCl₂
2NaOH(aq) + FeCl₂(aq) --> 2NaCl(aq) + Fe(OH)₂(s)
Learn more about chemical equation:
brainly.com/question/7181548
#SPJ1
<u>Answer:</u> The mass of sucrose required is 69.08 g
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 8.80 atm
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (sucrose) = ?
Molar mass of sucrose = 342.3 g/mol
Volume of solution = 564 mL (Density of water = 1 g/mL)
R = Gas constant = 
T = Temperature of the solution = 290 K
Putting values in above equation, we get:

Hence, the mass of sucrose required is 69.08 g
Answer: Region 3
Explanation: The temperature and time graph suggests that region 3 is the region in which the substance can co exist in both the phases that is solid phase and liquid phase.
Region 1 explains that the the solid has just started melting and there occurs a break point and then region 2 again explains that the solid is taking more time with temperature to get converted into the liquid and thus region 3 explains the equilibrium between the two phases.
Answer:
See detailed reaction equations below
Explanation:
a) Mg(s) +2HBr(aq) ----------------> MgBr2(aq) + H2(g)
b) Ca(ClO3)2(s) ------------> CaCl2(s) + 3O2(g)
c) 3BaBr2(s) +2Na3PO4(aq) ------------> Ba3(PO4)2(s) + 6NaBr(aq)
d) 3AgNO3(aq) + AlI3(aq) --------------> 3AgI(s) + Al(NO3)3(aq)
Balancing reaction equations involves taking valencies and number of atoms of each element on the reactants and products side into consideration respectively.