Answer:
786.6 N
Explanation:
mass of car, m = 912 kg
initial velocity of car, u = 31.5 m/s
final velocity of car, v = 24.6 m/ s
time, t = 8 s
Let a be the acceleration of the car
Use first equation of motion
v = u + a t
24.6 = 31.5 + a x 8
a = - 0.8625 m/s^2
Force, F = mass x acceleration
F = 912 x 0.8625
F = 786.6 N
Thus, the force on the car is 786.6 N.
Answer:
0.34 sec
Explanation:
Low point of spring ( length of stretched spring ) = 5.8 cm
midpoint of spring = 5.8 / 2 = 2.9 cm
Determine the oscillation period
at equilibrum condition
Kx = Mg
g= 9.8 m/s^2
x = 2.9 * 10^-2 m
k / m = 9.8 / ( 2.9 * 10^-2 ) = 337.93
note : w =
=
= 18.38 rad/sec
Period of oscillation = 
= 0.34 sec
Answer:
M_c = 100.8 Nm
Explanation:
Given:
F_a = 2.5 KN
Find:
Determine the moment of this force about C for the two cases shown.
Solution:
- Draw horizontal and vertical vectors at point A.
- Take moments about point C as follows:
M_c = F_a*( 42 / 150 ) *144
M_c = 2.5*( 42 / 150 ) *144
M_c = 100.8 Nm
- We see that the vertical component of force at point A passes through C.
Hence, its moment about C is zero.
Answer:
Density is an important physical property of matter. It reflects how closely packed the particles of matter are. When particles are packed together more tightly, matter has greater density.
Explanation:
Well a Electron capture is, <span> one process that unstable atoms can use to become more stable. :) Hope this helps if ya want subscribe to my YouTube it's Enstanding tysm!</span>