1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elden [556K]
2 years ago
14

Which color of light is produced by mixing red light and blue light?

Physics
2 answers:
Nonamiya [84]2 years ago
8 0

Answer:

magenta light

Explanation:

red+blue=purple but the light makes the radius lighter so its magenta

Licemer1 [7]2 years ago
5 0

Answer:

the answer is magenta light

Explanation:

When red and blue light are combined, the result is magenta.. When green and blue light are combined, they make cyan. Red and green light make yellow.

You might be interested in
Free Brainliest. Who is faster, Sonic or the car from back to the future?
viva [34]

Answer:

sonic duh

Explanation:

7 0
2 years ago
Read 2 more answers
Help mee! Physics i think!
xxTIMURxx [149]

Answer:

Use the form of equation:

Q=mL

You have the specific latent heat of vaporization L = 2.260*10^{6}

And Q, the heat energy supplied, which equals 1695 KJ = 1695*10^{3} J

So you can get the mass by substitution in the formula below.

5 0
2 years ago
Answer this please. thanks in advance!! please tel me                                                                 a christma
saw5 [17]
If 50 identical light bulbs are connected in series across
a single power source, then the voltage across each bulb
is ( 1/50 ) of the voltage delivered by the power source.
6 0
3 years ago
Read 2 more answers
17.Explain the different ways that an object can become electrically charged.
Debora [2.8K]

17.

There are three different methods for charging objects:

- Friction: in friction, two objects are rubbed against each other. As a result, electrons can be passed from one object to the other, so one object will gain a net negative charge while the other object will gain a net positive charge due to the lack of electrons.

- Conduction: this occurs when two conductive objects are put in contact with each other, and charges (electrons, usually) are transferred from one object to the other one.

- Induction: this occurs when two objects are brought closer to each other, but not in contact. If one of the two objects has a net charge (different from zero) on its surface, then it will induce a movement of charges in the second object: in particular, in the second object, charges of the opposite polarity will be attracted towards the first object, while charges of same polarity will be repelled further away.

18.

Charged objects produce around themselves an electric field. The strenght of the electric field is given by (assuming the charged objects are spherical)

E=k\frac{q}{r^2}

where k is the Coulomb's constant, q is the magnitude of the charge and r the distance from the centre of the charge. As we see, the strength of the field is inversely proportional to the square of the distance.

Also, the direction of the field is determined by the sign of the charge:

- if the charge is positive, the electric field points away from the charge (this means that other positive charges in the field will be repelled away)

- if the charge is negative, the electric field points towards the charge (this means that other positive charges in the field will be attracted towards it)

19.

Electrical force is given by:

F=k\frac{q_1 q_2}{r^2}

where k is the Coulomb's constant, q1 and q2 are the two charges, and r their separation.

Gravitational force is given by:

F=G\frac{m_1 m_2}{r^2}

where G is the gravitational constant, m1 and m2 are the masses of the two objects, and r their separation.

Similarities between the two forces:

- Both are inversely proportional to the square of the distance between the two objects, r

- Both are non-contact forces (the two objects can experience the forces even if they are not in contact)

- Both forces have infinite range

Differencies between the two forces:

- The electric force can be either attractive or repulsive, while the gravitational force is attractive only

- The electric force is much stronger than the gravitational force, due to the much larger value of the Coulomb's constant k compared to the gravitational constant G

4 0
3 years ago
How much net force is required to accelerate a 2000 kg car at 3.00 m/s^2
andrezito [222]

The net force required to accelerate a car is 6000 N.

Force is defined as the product of the mass and acceleration of the body. Force is used to changing the velocity that is to accelerate an object or a body of a particular mass. The unit of Force is Newton or kg m/s^2.

The formula used to calculate the net force is :

F = ma

where, F = Force

m = mass = 2000 kg

a = acceleration = 3.00 m/s^2

∴ F = 2000*3

F = 6000 N

Thus, to accelerate the car at 3.00 m/s^2 of mass 2000 kg net force required is 6000 N.

To learn more about force,

brainly.com/question/1046166

6 0
1 year ago
Other questions:
  • What reaction involves burning?
    13·1 answer
  • A state highway was constructed over wetlands. The state obtained a permit to fill the existing wetlands in accordance with the
    13·1 answer
  • An object cannot have a charge of
    6·1 answer
  • A car starting from rest accelerates at a constant 2.0 m/s2 for 10 s. It then travels with constant speed it has achieved for an
    6·1 answer
  • Why do solids have a definite shape?
    13·2 answers
  • In Part H, you discovered that the luminosity of a light bulb increases if the current increases. The rate at which electric pot
    11·1 answer
  • Que propiedad de la Luz se produce cuando ves tu cara reflejada en la cuchara?
    9·1 answer
  • The temperature decreases 5°C in one hour and then decreases another 3°C in the next hour. Does this fit the definition of weath
    11·1 answer
  • I need ideas of what kind of simple motor i can build and how i can build it. The simple motor MUST spin without using your own
    12·2 answers
  • A well-trained athlete can run 400m in 47s, what is the athlete’s velocity?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!