<span>20-9x=11
-9x=11-20
-9x= -9
x= -9/(-9)
x=1
4(2x+1)=8
2x+1=8/4
2x+1=2
2x=2-1
2x=1
x=1/2
x=0.5
5(2x+5)=-15
2x+5= -15/5
2x+5= -3
2x= -3-5
2x= -8
x= -8/2
x=-4
3(8x+1)=-21
8x+1= -21/3
8x+1= -7
8x= -7-1
8x =-8
x= -8/8
x= -1
</span>
Answer: 7/6
Step-by-step explanation:
If he is writing sixths, then we have multiples of 1/6.
this is:
0*(1/6) = 0
1*(1/6) = 1/6
.
.
.
5*(1/6) = 5/6 (the numer he wrote at the left of 1)
6*(1/6) = 6/6 = 1
7*(1/6) = 7/6
So the number next to 1, (at the right of 1) must be 7/6.
You also can find it by adding 1/6 to 1.
1/6 + 1 = 1/6 + 6/6 = 7/6.
Step-by-step explanation:






Answer:
![\large\boxed{\sqrt[3]{3^{15}}=243}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%5Csqrt%5B3%5D%7B3%5E%7B15%7D%7D%3D243%7D)
Step-by-step explanation:
![\sqrt[3]{3^{15}}\\\\\text{use}\ (a^n)^m=a^{nm}\\\\=\sqrt[3]{3^{5\cdot3}}=\sqrt[3]{(3^5)^3}\\\\\text{use}\ \sqrt[n]{a^n}=a\\\\=3^5=243](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%5E%7B15%7D%7D%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20%28a%5En%29%5Em%3Da%5E%7Bnm%7D%5C%5C%5C%5C%3D%5Csqrt%5B3%5D%7B3%5E%7B5%5Ccdot3%7D%7D%3D%5Csqrt%5B3%5D%7B%283%5E5%29%5E3%7D%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%5C%5C%5C%5C%3D3%5E5%3D243)