Answer:
Explanation:
To calculate pH you need to use Henderson-Hasselbalch formula:
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Where HA is the acid concentration and A⁻ is the conjugate base concentration.
The equilibrium of acetic acid is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺ pka: 4,75
Where <em>CH₃COOH </em>is the acid and <em>CH₃COO⁻ </em>is the conjugate base.
Thus, Henderson-Hasselbalch formula for acetic acid equilibrium is:
pH = 4,75 + log₁₀ ![\frac{[CH_{3}COO^-]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOO%5E-%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)
a) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[2 mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B2%20mol%5D%7D)
<em>pH = 4,75</em>
<em></em>
b) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[1mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B1mol%5D%7D)
<em>pH = 5,05</em>
<em></em>
I hope it helps!
the time it take for a planet to rotate on its axis makes up its day so if it were slower the day would be longer like earth, it take about 24 hours to make one full rotation.
Now for a year the distance from its star is the largest factor, because the further out the longer it takes to revolve around it, thus making a longer year.
Answer:
B) Electrons are located in the cloud-like areas around the nucleus.
Explanation:
The quantum mechanical model of the atom does not consider the path through which an electron travels. It rather estimates the probability of where electrons can be found at each energy level.
The region of maximum probability of where an electron is located is sometimes called an electron cloud or orbital. Each orbital of an atom and the electrons accomodated are described completely by a set of four quantum numbers.
Answer:
18 O, 17 O, and 16 O
Explanation:
three naturally stable isotopes
States of Matter
Gases, liquids and solids are all made up of microscopic particles, but the behaviors of these particles differ in the three phases.
Note that:
Particles in a:
gas are well separated with no regular arrangement.
liquid are close together with no regular arrangement.
solid are tightly packed, usually in a regular pattern.
Particles in a:
gas vibrate and move freely at high speeds.
liquid vibrate, move about, and slide past each other.
solid vibrate (jiggle) but generally do not move from place to place.
Liquids and solids are often referred to as condensed phases because the particles are very close together.
The following table summarizes properties of gases, liquids, and solids and identifies the microscopic behavior responsible for each property.
Some Characteristics of Gases, Liquids and Solids and the Microscopic Explanation for the Behavior
gas liquid solid
assumes the shape and volume of its container
particles can move past one another assumes the shape of the part of the container which it occupies
particles can move/slide past one another retains a fixed volume and shape
rigid - particles locked into place
compressible
lots of free space between particles not easily compressible
little free space between particles not easily compressible
little free space between particles
flows easily
particles can move past one another flows easily
particles can move/slide past one another