Answer:
.
Step-by-step explanation: Given radical expression
.
According to the product property of roots.
![\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{a \times b}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20%5Ctimes%20%5Csqrt%5Bn%5D%7Bb%7D%20%3D%20%5Csqrt%5Bn%5D%7Ba%20%5Ctimes%20b%7D)
On applying above rule, we get
![\sqrt[3]{5x} \times \sqrt[3]{25x^2} = \sqrt[3]{5x \times 25x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B5x%7D%20%5Ctimes%20%5Csqrt%5B3%5D%7B25x%5E2%7D%20%3D%20%5Csqrt%5B3%5D%7B5x%20%5Ctimes%2025x%5E2%7D)
5 × 25 = 125 and

Therefore,
![\sqrt[3]{5x \times 25x^2}= \sqrt[3]{125x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B5x%20%5Ctimes%2025x%5E2%7D%3D%20%5Csqrt%5B3%5D%7B125x%5E3%7D)
<h3>So, the correct option would be second option
![\sqrt[3]{125x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B125x%5E3%7D)
.</h3>
Answer:
20
Step-by-step explanation:
1 hour=2 kg
10 hrs=10×2=20
Mark as brainliest please!
Answer:
Rs 328
Step-by-step explanation:
Find the <u>principal</u> amount invested.
<u>Simple Interest Formula</u>
I = Prt
where:
- I = interest earned
- P = principal
- r = interest rate (in decimal form)
- t = time (in years)
Given:
- I = Rs 320
- r = 5% = 0.05
- t = 2 years
Substitute the given values into the formula and solve for P:
⇒ 320 = P(0.05)(2)
⇒ 320 = P(0.1)
⇒ P = 3200
<u>Compound Interest Formula</u>

where:
- I = interest earned
- P = principal amount
- r = interest rate (in decimal form)
- n = number of times interest applied per time period
- t = number of time periods elapsed
Given:
- P = 3200
- r = 5% = 0.05
- n = 1 (annually)
- t = 2 years
Substitute the given values into the formula and solve for I:





Therefore, the compound interest on the same sum for the same time at the same rate is Rs 328.
Answer:
y=1.5x+5
Step-by-step explanation: