Option (B)is correct.
Alternating electric and magnetic fields has electromagnetic radiation that travel in the form of a wave.
The varying or alternating electric field produces the varying magnetic field.This varying magnetic field in turn produces varying electric field . Thus these varying electric and magnetic fields travel in the form of electromagnetic waves. These electromagnetic waves travel with the velocity of light.These are transverse in nature.
star wars 1313 is a cancelled video game ( action / adventure ) that was under development by lucas arts.
My Best answer would be neuron, spinal, cord, motor neuron, muscles.
Answer:
option (a) 0.61 s
Explanation:
Given;
Time taken by the ball to reach the ground = 0.50 s
Let us first calculate the distance through which the ball falls on the ground
from the Newton's equation of motion, we have

where,
s is the distance
a is the acceleration
t is the time
here it is the case of free fall
thus, a = g = acceleration due to gravity
u = initial speed of the ball = 0
on substituting the values, we get

or
s = 1.225 m
Now,
when the elevator is moving up with speed of 1.0 m/s
the initial speed of the ball = -1.0 m/s (as the elevator is moving in upward direction)
thus , we have

or

or
4.9t^2 - t - 1.225 = 0
or
t = 0.612 s
hence, the correct answer is option (a) 0.61 s
Answer:
Explanation:
V = 100sin(ωt) + 150cos(ωt)
let x = ωt
V = 100sin(x) + 150cos(x)
a maximum or minimum will occur when the derivative is zero
V' = 100cos(x) - 150sin(x)
0 = 100cos(x) - 150sin(x)
100cos(x) = 150sin(x)
100/150 = sin(x)/cos(x)
0.6667 = tan(x)
x = 0.588 rad
V = 100sin(0.588) + 150cos(0.588)
V = 180.27756
as the maximum will not occur until ωt = 0.588 radians, for a cosine function we subtract that amount as a phase angle φ
V = 180.3 cos(ωt - 0.588)
or as a sine function, the phase angle lags the cosine by a difference of π/2
V = 180.3sin(ωt - (0.588 - π/2)
V = 180.3sin(ωt + 0.983)