Answer:
The outbreak of tornadoes that tore across the Gulf and the East Coast Tuesday and Wednesday was unusual for two reasons. For one thing, the severe weather encompassed a significant swath of the country. For another, winter is the least likely time for tornadic thunderstorms.
Explanation:
The outbreak of tornadoes that tore across the Gulf and the East Coast Tuesday and Wednesday was unusual for two reasons. For one thing, the severe weather encompassed a significant swath of the country. For another, winter is the least likely time for tornadic thunderstorms.
And yet tornadoes are an expected part of life in the United States—especially in the multi-state area known as Tornado Alley. (Florida, too, sees a disproportionately high number of tornadoes, because of its frequent thunderstorms.) The United States gets more tornadoes, by far, than any other place on the planet. It averages about 1,250 twisters a year. Canada, which sees about 100 tornadoes per year, is a “distant second,” according to the National Centers for Environmental Information.
The heat is transferred to one material to another, however insulators minimize that transfer, keeping it in the area, warming it.
All of the Noble Gases, which are on the right side of the periodic table, have a full outer energy level. The elements that are Noble Gases are the following: <span>Neon Argon Krypton Xenon Radon Ununoctium.
Hope this helps.</span>
Answer:
a) m=20000Kg
b) v=0.214m/s
Explanation:
We will separate the problem in 3 parts, part A when there were no coals on the car, part B when there is 1 coal on the car and part C when there are 2 coals on the car. Inertia is the mass in this case.
For each part, and since the coals are thrown vertically, the horizontal linear momentum p=mv must be conserved, that is,
, were each velocity refers to the one of the car (with the eventual coals on it) for each part, and each mass the mass of the car (with the eventual coals on it) also for each part. We will write the mass of the hopper car as
, and the mass of the first and second coals as
and
respectively
We start with the transition between parts A and B, so we have:

Which means

And since we want the mass of the first coal thrown (
) we do:



Substituting values we obtain

For the transition between parts B and C, we can write:

Which means

Since we want the new final speed of the car (
) we do:

Substituting values we obtain
