Answer:
The car would travel after applying brakes is, d = 14.53 m
Explanation:
Given that,
The time taken to apply brakes fully is, t = 0.5 s
The velocity of the car, v = 29.06 m/s
The distance traveled by the car in 0.5 s, d = ?
The relation between the velocity, displacement, and time is given by the formula
d = v x t m
Substituting the values in the above equation,
d = 29.06 m/s x 0.5 s
= 14.53 m
Therefore, the car would travel after applying brakes is, d = 14.53 m
<span>principal quantum number (n) </span>represents the relative overall energy of each orbital
Hope this helps!
Answer:
- Distance is a scalar quantity, defined as the total amount of space covered by an object while moving between the final position and the initial position. Therefore, it depends on the path the object has taken: the distance will be minimum if the object has travelled in a straight line, while it will be larger if the object has taken a non-straight path.
- Displacement is a vector quantity, whose magnitude is equal to the distance (measured in a straight line) between the final position and the initial position of the object. Therefore, the displacement does NOT depend on the path taken, but only on the initial and final point of the motion.
If the object has travelled in a straight path, then the displacement is equal to the distance. In all other cases, the distance is always larger than the displacement.
A particular case is when an object travel in a circular motion. Assuming the object completes one full circle, we have:
- The distance is the circumference of the circle
- The displacement is zero, because the final point corresponds to the initial point
Answer
How do you think a winter day in San Francisco will be different from Kansas City
Explanation
How do you think a winter day in San Francisco will be different from Kansas City
How do you think a winter day in San Francisco will be different from Kansas City