Answer:
the amount of concentration is about 23.9 grams of concentration you might want to add some hydrochloric acid to get the acidity to about 7 or seven depending on what you are doing
Answer:
2.64 M
Explanation:
To find the molarity, you need to (1) convert grams to moles (via molar mass), then (2) convert mL to L, and then (3) calculate the molarity (via molarity ratio). The final answer should have 3 sig figs to match the sigs figs of the given values.
(Step 1)
Molar Mass (NH₄NO₃): 2(14.007 g/mol) + 4(1.008 g/mol) + 3(15.998 g/mol)
Molar Mass (NH₄NO₃): 80.04 g/mol
66.5 grams NH₄NO₃ 1 mole
--------------------------------- x ---------------------- = 0.831 moles NH₄NO₃
80.04 grams
(Step 2)
1,000 mL = 1 L
315 mL 1 L
-------------- x ------------------ = 0.315 L
1,000 mL
(Step 3)
Molarity = moles / volume
Molarity = 0.831 moles / 0.315 L
Molarity = 2.64 M
Since each Chlorine molecule is -1 and wants to gain an electron, 2 Chlorine atoms like to come together to form Cl2 by sharing 2 electrons each to form a single bond between the 2 atoms. Since both Chlornine has the same electronegativity, the bond is non-polar covalent since there electrons are evenly shared.
CH₃CH₂OCH₂ is more soluble in water because it has shorter hydrocarbon chain.
<h3>What is hydrocarbon?</h3>
Hydrocarbon is defined as the compound which contain hydrocarbon and carbon atoms.
The carbon atom attached to each other to form framework and hydrogen atom attach to them in different ways to give different configuration. One of the most popular hydrocarbon compound is diamond.
<h3>Solubility of hydrocarbon in water</h3>
Hydrocarbon is non polar compound whereas water is polar compound. So, hydrocarbon is in soluble in water. But as they have weak intermolecular interactions known as London dispersion forces i.e. Instantaneous dipole-induced dipole interactions.
make them less soluble in water.
Greater the hydrocarbon chain lesser will be the solubility of ketone in water. On the other hand, lesser the hydrocarbon chain greater will be the solubility of ketone in water.
Thus, we concluded that the CH₃CH₂OCH₂ is more soluble in water because it has shorter hydrocarbon chain.
learn more about hydrocarbon:
brainly.com/question/16020705
#SPJ4