1. Two parallel normal faults form.
4. The hanging wall on the left slides down relative to the footwall.
5. The hanging wall on the right slides down relative to the footwall.
Answer:

Explanation:
The metabolic pathway by which energy can be obtained from a fatty acid is called <u>"beta-oxidation"</u>. In this route, acetyl-Coa is produced by removing <u>2 carbons</u> from the fatty acid for each acetyl-Coa produced. In other words, for each round, 1 acetyl Coa is produced and for each round 2 carbons are removed from the initial fatty acid. Therefore, the first step is to calculate the <u>number of rounds</u> that will take place for an <u>18-carbon fatty</u> acid using the following equation:

Where "n" is the <u>number of carbons</u>, in this case "18", so:

We also have to calculate the amount of Acetyl-Coa produced:

Now, we have to keep in mind that in each round in the beta-oxidation we will have the <u>production of 1
and 1
</u>. So, if we have 8 rounds we will have 8
and 8
.
Finally, for the total calculation of ATP. We have to remember the <u>yield for each compound</u>:
-)
-) 
-) 
Now we can do the total calculation:

We have to <u>subtract</u> "2 ATP" molecules that correspond to the <u>activation</u> of the fatty acid, so:

In total, we will have 128 ATP.
I hope it helps!
Answer:- As per the question is asked, 35.0 moles of acetylene gives 70 moles of carbon dioxide but if we solve the problem using the limiting reactant which is oxygen then 67.2 moles of carbon dioxide will form.
Solution:- The balanced equation for the combustion of acetylene is:

From the balanced equation, two moles of acetylene gives four moles of carbon dioxide. Using dimensional analysis we could show the calculations for the formation of carbon dioxide by the combustion of 35.0 moles of acetylene.

= 
The next part is, how we choose 35.0 moles of acetylene and not 84.0 moles of oxygen.
From balanced equation, there is 2:5 mol ratio between acetylene and oxygen. Let's calculate the moles of oxygen required to react completely with 35.0 moles of acetylene.

= 
Calculations shows that 87.5 moles of oxygen are required to react completely with 35.0 moles of acetylene. Since only 84.0 moles of oxygen are available, the limiting reactant is oxygen, so 35.0 moles of acetylene will not react completely as it is excess reactant.
So, the theoretical yield should be calculated using 84.0 moles of oxygen as:

= 
Oxygen has to be involved when methanol is ignited