<span>Use s = ut + 1/2 at^2, so
s = 0 + 1/2 x20 x 1.8 x 1.8
s = 32.4 m.</span>
W=F*s
W=9000*0
W=0
W:Work
F:Force
s:Distance
Answer:
Length = 2.32 m
Explanation:
Let the length required be 'L'.
Given:
Resistance of the resistor (R) = 3.7 Ω
Radius of the rod (r) = 1.9 mm = 0.0019 m [1 mm = 0.001 m]
Resistivity of the material of rod (ρ) = 
First, let us find the area of the circular rod.
Area is given as:

Now, the resistance of the material is given by the formula:

Express this in terms of 'L'. This gives,

Now, plug in the given values and solve for length 'L'. This gives,

Therefore, the length of the material required to make a resistor of 3.7 Ω is 2.32 m.
Hold on lemme get the link for you
<span>First question: The type of energy involved when a river moves sediment and erodes its banks is: option d. Kinetic energy. Kinetic energy is the energy associated with motion. A body (in this case the water) that moves has an energy associated with its motion that is proportional to the speed (exactly to the square of the speed). When the water collides with the banks it is the kinetic energy of the river that erodes it Second question: the answer is the option d. As gravity pulls water down a slope potential energy changes to knietic energy. This is the, water loses altitude and gains velocity. The potential energy. which is proportional to the height, decreases and the kinetic energy, which is proportional to the square of the speed, increases.</span>