Answer:
a. 58.5 g/mol
b. 0.1 mol
Explanation:
a.
The molar mass of Na is 23.0 g/mol. The molar mass of Cl is 35.5 g/mol. The molar mass of NaCl is:
M(Na) + M(Cl) = 23.0 g/mol + 35.5 g/mol = 58.5 g/mol
b. A healthy adult should eat no more than 6 g of salt in one day. The moles corresponding to 6 g of NaCl are:
6 g × (1 mol/58.5 g) = 0.1 mol
Answer: 1:4.69
Explanation:
The ratio can be expressed as:
Ua/Ub= √(Mb/Ma)
Where Ua/Ub is the ratio of velocity of hydrogen to carbon dioxide and Ma is the molecular mass of hydrogen gas= 2
Mb is the molecular mass of CO2 = 44
Therefore
Ua/Ub= √(44/2)
Ua/Ub = 4.69
Therefore the ratio of velocity of hydrogen gas to carbon dioxide = 1:4.69
which implies hydogen is about 4.69 times faster than carbon dioxide.
The type of bonds present in the compound. and the type of structure it has and the elements that are presents and the number of moles of each element in one mole of the compound.
When a solvent has as much of the dilute dissolved in it as possible, then it is saturated.
If you were to heat the water, its capacity would increase and would then be super-saturated because it has more dissolved in it than possible as room temp.
Since there is no heating being done, the water is just saturated.
Hope that helps!
Answer:
Concentration of nitrate in the new solution = 0.007 M
Explanation:
Given:
Concentration nitrate solution = 0.070 m
Volume of aliquote of the nitrate solution is add = 10.0 ml
Total volume = 100 ml
Find:
Concentration of nitrate in the new solution
Computation:
Number of M. mole = 0.070 m x 10.0 ml
Number of M. mole = 0.7 m-moles
Concentration of nitrate in the new solution = 0.7 m-moles / 100 ml
Concentration of nitrate in the new solution = 0.007 M