Use the formula PV=NRT to find the amount of moles of nitrogen gas. Then use the same formula using the amount of moles found to find the temperature
Answer:
The heat at constant pressure is -3,275.7413 kJ
Explanation:
The combustion equation is 2C₆H₆ (l) + 15O₂ (g) → 12CO₂ (g) + 6H₂O (l)
= (12 - 15)/2 = -3/2
We have;

Where R and T are constant, and ΔU is given we can write the relationship as follows;

Where;
H = The heat at constant pressure
U = The heat at constant volume = -3,272 kJ
= The change in the number of gas molecules per mole
R = The universal gas constant = 8.314 J/(mol·K)
T = The temperature = 300 K
Therefore, we get;
H = -3,272 kJ + (-3/2) mol ×8.314 J/(mol·K) ×300 K) × 1 kJ/(1000 J) = -3,275.7413 kJ
The heat at constant pressure, H = -3,275.7413 kJ.
The mass of NaCl needed for the reaction is 91.61 g
We'll begin by calculating the number of mole of F₂ that reacted.
- Gas constant (R) = 0.0821 atm.L/Kmol
PV = nRT
1.5 × 12 = n × 0.0821 × 280
18 = n × 22.988
Divide both side by 22.988
n = 18 / 22.988
n = 0.783 mole
Next, we shall determine the mole of NaCl needed for the reaction.
F₂ + 2NaCl —> Cl₂ + 2NaF
From the balanced equation above,
1 mole of F₂ reacted with 2 moles of NaCl.
Therefore,
0.783 mole F₂ will react with = 0.783 × 2 = 1.566 moles of NaCl.
Finally, we shall determine the mass of 1.566 moles of NaCl.
- Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass = mole × molar mass
Mass of NaCl = 1.566 × 58.5
Mass of NaCl = 91.61 g
Therefore, the mass of NaCl needed for the reaction is 91.61 g
Learn more about stiochoimetry: brainly.com/question/25830314
Answer:
2-chloro-4-methylpentanal.
Explanation:
Hello there!
In this case, according to the chemical compound:
CH3-CH-CH2-CH-CHO
| |
CH3 Cl
We can see the main functional group is an starting carbonyl, which means this is an aldehyde. Moreover, we can see a Cl-substituent on the second carbon and a methyl substituent on the fourth carbon. Therefore, the IUPAC name turns out: 2-chloro-4-methylpentanal.
Best regards!