Answer:
The volume is 4.13793 L
Explanation:
Density is a quantity that expresses the relationship between the mass and the volume of a body, so it is defined as the quotient between the mass and the volume of a body:

Density is a characteristic property of every body or substance.
The most commonly used units of density are
or
for solids, and
or
for liquids and gases.
In this case, you know:
- density= 0.87

- mass= 3.6 kg= 3,600 g (being 1 kg=1,000 g)
- volume= ?
Replacing:

Solving:

volume= 4,137.93 mL
Being 1,000 mL=1 L, then volume= 4,137.93 mL= 4.13793 L
<u><em>The volume is 4.13793 L</em></u>
Answer:
cannot be broken down further
Answer:
E) All of the above.
Explanation:
Hello,
Since the acidic nature of the HCl implies its corrosiveness, when it is in contact with the skin and eyes the burning starts immediately, so gloves and goggles must be worn. Next, the fuming hydrochloric acid (37% by mass) is volatile so it gives off even when dissolved into water, so it must be used in the fume hood. Then, since vapors are produced during the chemical reaction, an overpressure could be attained, that's why we must keep the glass sash of the fume hood between us and the vial. As a common risk, the vial could be dropped causing the hydrochloric acid to splash, so we must keep the vial well inside the hood.
Best regards.
Answer:
Explained below
Explanation:
When we heat a liquid, what happens is that the molecules of the liquid will absorb heat and thus develop kinetic energy that will make them move faster.
Now, as the liquid begins to boil, bubbles of will be formed inside the liquid and then rises to the surface. Now, when the temperature of the reaches 100°C which is the boiling point of a liquid, the molecules at the top of the liquid begin to change to gaseous state and escape in form of vapour.
Answer : The time taken for the reaction is, 28 s.
Explanation :
Expression for rate law for first order kinetics is given by :
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 0.0632
t = time taken for the process = ?
= initial amount or concentration of the reactant = 1.28 M
= amount or concentration left time 't' = 
Now put all the given values in above equation, we get:


Therefore, the time taken for the reaction is, 28 s.