Answer:
The third choice
Step-by-step explanation:
We need to find the slope and y-intercept of the line and then put it into y = mx = b form. To find the slope, pick a point on the line; I will use (-2, 5); count how many units up you need to go to get to the next point on the line, which in this case it would be 3. The count how many to the right or left you would need to go, which is 1 to the left. Moving left means a negative, so it is -1. Your slope fraction would be , since slope is rise over run. You can sub this fraction in for m in y = mx + b, which will give you a revised equation of y = -3x = b. To find the y intercept, or b, just find the point where the line crosses the y-axis, which is -1. So, the equation is now y = -3x - 1.The correct answer is third choice.
Answer:
1 / ( 243s^40 )
Step-by-step explanation:
For this problem, we need to know that a negative exponent simply can be rewritten in the opposing part of the fraction, for this case, the denominator. So we can simplify as shown:
(3s^8)^-5
= 1 / (3s^8)^5
= 1 / 3^5 * s^8^5
= 1 / 243 * s^40
= 1 / ( 243s^40 )
Cheers.
5z>15-----subtract 2 on both sides
z>3----divide by 5
therefore, z must equal -10, or -4
Answer:
Step-by-step explanation:
So 8 times what is 5?
8 times x=5
x=0.625
Let p be
the population proportion. <span>
We have p=0.60, n=200 and we are asked to find
P(^p<0.58). </span>
The thumb of the rule is since n*p = 200*0.60
and n*(1-p)= 200*(1-0.60) = 80 are both at least greater than 5, then n is
considered to be large and hence the sampling distribution of sample
proportion-^p will follow the z standard normal distribution. Hence this
sampling distribution will have the mean of all sample proportions- U^p = p =
0.60 and the standard deviation of all sample proportions- δ^p = √[p*(1-p)/n] =
√[0.60*(1-0.60)/200] = √0.0012.
So, the probability that the sample proportion
is less than 0.58
= P(^p<0.58)
= P{[(^p-U^p)/√[p*(1-p)/n]<[(0.58-0.60)/√0...
= P(z<-0.58)
= P(z<0) - P(-0.58<z<0)
= 0.5 - 0.2190
= 0.281
<span>So, there is 0.281 or 28.1% probability that the
sample proportion is less than 0.58. </span>