The amount of sample that is left after a certain period of time, given the half-life, h, can be calculated through the equation.
A(t) = A(o) (1/2)^(t/d)
where t is the certain period of time. Substituting the known values,
A(t) = (20 mg)(1/2)^(85.80/14.30)
Solving,
A(t) = 0.3125 mg
Hence, the answer is 0.3125 mg.
Answer:
orbiting closer to the earth's surface.....im pretty sure abt it
Answer:
Explanation:
Using freezing point depression formula,
ΔTemp.f = Kf * b * i
Where,
ΔTemp.f = temp.f(pure solvent) - temp.f(solution)
b = molality
i = van't Hoff factor
Kf = cryoscopic constant
= 1.86°C/m for water
= (0 - (-5.58))/1.86
= 3.00 mol/kg
Assume 1 kg of water(solvent)
= (3.00 x 1)
= 3.00 mol.