Answer:
whole milk ,table salt , maple syrup
Answer:
a, and f.
Explanation:
To be deprotonated, the conjugate acid of the base must be weaker than the acid that will react, because the reactions favor the formation of the weakest acid. The pKa value measures the strength of the acid. As higher is the pKa value, as weak is the acid. So, let's identify the conjugate acid and their pKas:
a. NaNH2 will dissociate, and NH2 will gain the proton and forms NH3 as conjugate acid. pKa = 38.0, so it happens.
b. NaOH will dissociate, and OH will gain the proton and forms H2O as conjugate acid. pKa = 14.0, so it doesn't happen.
c. NaC≡N will dissociate, and CN will gain a proton and forms HCN as conjugate acid. pKa = 9.40, so it doesn't happen.
d. NaCH2(CO)N(CH3)2 will dissociate and forms CH3(CO)N(CH3)2 as conjugate acid. pKa = -0.19, so it doesn't happen.
e. H2O must gain one proton and forms H3O+. pKa = -1.7, so it doesn't happen.
f. CH3CH2Li will dissociate, and the acid will be CH3CH3. pKa = 50, so it happens.
Answer:
There are 9.8 ×1021. formula units in 10,005.8gCaO
We can use a variety of formulas to determine our answers here.
Our formula for pOH is -log(mol), and we can plug it in as -log(0.010). Take note that OH- is a base, not an acid.
So, the pOH of OH- is 2.
To find pH we can set up this simple equation:
pH + pOH = 14
All we need to do is subtract 2 from 14, therefore the pH is 12.
This makes sense since acids range in the pH of 1-6, and we are dealing with a base. Hope I could help!
Answer:
I Would bc it's the better opportunity