Answer:
it is a soft and very cold molocules but at the touch of a hand it will melt because of how compact the molocules are
Explanation:
The ability of solutions to lower the vapor pressure of a pure solvent and decrease its evaporation
The molarity of the acid given the data from the question is 0.30 M
<h3>Balanced equation </h3>
2HNO₃ + Ba(OH)₂ —> Ba(NO₃)₂ + 2H₂O
From the balanced equation above,
- The mole ratio of the acid, HNO₃ (nA) = 2
- The mole ratio of the base, Ba(NO₃)₂ (nB) = 1
<h3>How to determine the molarity of the acid</h3>
From the question given above, the following data were obtained:
- Volume of acid, HNO₃ (Va) = 39.7 mL
- Volume of base, Ba(NO₃)₂ (Vb) = 24 mL
- Molarity of base, Ba(NO₃)₂ (Cb) = 0.250 M
- Molarity of acid, HNO₃ (Ma) =?
MaVa / MbVb = nA / nB
(Ma × 39.7) / (0.25 × 24) = 2
(Ma × 39.7) / 6 = 2
Cross multiply
Ma × 39.7 = 6 × 2
Ma × 39.7 = 12
Divide both side by 39.7
Ma = 12 / 39.7
Ma = 0.30 M
Learn more about titration:
brainly.com/question/14356286
#SPJ1
A solution with a pH of 6.52 has a hydronium ion concentration of 3.02x10-7 mol/L and a hydroxide ion concentration of 3.31x10-8 mol/L.
The hydronium ion concentration of a solution can be calculated from pH by using
. For a pH of 6.52, hydronium ion concentration is 3.02x10-7 mol/L.
The concentration of hydroxide ions can be determined by identifying the value of pOH. The sum of pOH and pH is equal to 14, which is based on the negative logarithm of the ion-product constant of water. At a pH of 6.52, pOH is equal to 7.48.
The relationship between pOH and hydroxide ion concentration is the same as the relationship between pH and hydronium ion concentration. With this, the hydroxide ion concentration at pOH of 7.48 is
or 3.31x10-8 mol/L.
For more information regarding pH and pOH, please refer to the link brainly.com/question/13557815.
#SPJ4