One well-known application of density is determining whether or not an object will float on water. If the object's density is less than the density of water, it will float; if its density is less than that of water, it will sink.In fact, submarines dive below the surface of the water by emptying their ballast tanks
_Award brainliest if helped!
Velocity
Note : Not speed as Acceleration is a vector!
Answer:
(a) 4.0334Ω
(b)parallel
Explanation:
for resistors connected in parallel;

Req =3.03Ω , R1 =12.18Ω



R2=1/0.2479
R2=4.0334Ω
(b)parallel connection is suitable for the desired total resistance. series connection can not be used to achieve a lower resistance as the equation for series connection is.
Req = R1+R2
<span>First of all, the maximum speed occurs when the object passes through the
equilibrium position
The kinetic energy when the object has this max speed is
K= 1/2 * mass * (1.25 m/s)^2
The potential energy in the spring when the speed is equal to zero
U= 1/2 * k * xmax^2
The maximun force of the spring is
mass*acceleration = k*xmax
m * 6.89 m/s2 = k * xmax
xmax = 6.89* m / k
0.5 * m * 1.56 = 0.5 * k * xmax^2
</span>m * 1.56 = k * (<span>6.89* m / k )^2 </span>
<span>
1.56 m = 47.47 m^2 / k
m/k = 0.032862
period = 2 *pi*sqrt[m/k]
= 2 pi </span><span>sqrt [ </span><span>0.032862]
= 1.139 s
A fourth of the period elapses between the instants of max acceleration and maximum speed
= 1/4* period
= 1/4 * </span><span><span>1.139 s </span>
= 0.284s </span>
B because the mantle is farther down in and a egg has more of the hard stuff inside