Answer:
4) 0.26 atm
Explanation:
In the process:
Benzene(l) → Benzene(g)
ΔG° for this process is:
ΔG° = -RT ln Q
<em>Where Q = P(Benzene(g)) / P°benzene(l) P° = 1atm</em>
ΔG° = 3700J/mol = -8.314J/molK * (60°C + 273.15) ln P(benzene) / 1atm
1.336 = ln P(benzene) / 1atm
0.26atm = P(benzene)
Right answer is:
<h3>4) 0.26 atm
</h3><h3 />
Answer:
0.583 kilojoules
Explanation:
The amount of heat required to pop a single kernel can be calculated using the formula as follows:
Q = m × c × ∆T
Where;
Q = amount of heat (J)
m = mass of water (g)
c = specific heat capacity of water (4.184 J/g°C)
∆T = change in temperature
From the given information, m = 0.905 g, initial temperature (room temperature) = 21°C , final temperature = 175°C, Q = ?
Q = m × c × ∆T
Q = 0.905 × 4.184 × (175°C - 21°C)
Q = 3.786 × 154
Q = 583.044 Joules
In kilojoules i.e. we divide by 1000, the amount of heat is:
= 583.04/1000
= 0.583 kilojoules
Answer: b) Less dense
Explanation:
Differences in density is one reason objects float or sink.
An object more dense than the fluid in which it is immersed will sink, while objects less dense than the fluid in which it is immersed will float to the surface.
But objects floats at constant level if the density is equal to the density of the fluid in which it is immersed; it neither rises nor sinks in the fluid in this case.