<h2><em>So there is two truths given. After an amount of time Ttotal (lets call it ‘t’):
</em></h2><h2><em>
</em></h2><h2><em>The car’s speed is 25m/s
</em></h2><h2><em>The distance travelled is 75m
</em></h2><h2><em>Then we have the formulas for speed and distance:
</em></h2><h2><em>
</em></h2><h2><em>v = a x t -> 25 = a x t
</em></h2><h2><em>s = 0.5 x a x t^2 -> 75 = 0.5 x a x t^2
</em></h2><h2><em>Now, we know that both acceleration and time equal for both truths. So we can say:
</em></h2><h2><em>
</em></h2><h2><em>t = 25 / a
</em></h2><h2><em>t^2 = 75 / (0.5 x a) = 150 / a
</em></h2><h2><em>Since we don’t want to use square root at 2) we go squared for 1):
</em></h2><h2><em>
</em></h2><h2><em>t^2 = (25 / a) ^2 = 625 / a^2
</em></h2><h2><em>t^2 = 150 / a
</em></h2><h2><em>Since t has the same value for both truths we can say:
</em></h2><h2><em>
</em></h2><h2><em>625 / a^2 = 150 / a
</em></h2><h2><em>
</em></h2><h2><em>Thus multiply both sides with a^2:
</em></h2><h2><em>
</em></h2><h2><em>625 = 150 x a, so a = 625 / 150 = 4.17
</em></h2><h2><em>
</em></h2><h2><em>We can now calculate t as well t = 25 * 150 / 625 = 6</em></h2>
The formula is:
v = v o + a t
6 = 10 + 3 * a
3 a = 10 - 6
a = 4 : 3
a = - 1.33 m/s² ( because the car slows down )
Answer: The average acceleration of the car is - 1.33 m/s²
Answer:
2.69 m/s
Explanation:
Hi!
First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:
x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m
So, the position as a function of time is:
xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m
Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:
xP(t)=V*t
In order for the passenger to catch the train
xP(t)=xT(t)
(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t
To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:
0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2
This equation give us the minimum velocity the passenger must have in order to catch the train:
V^2 - 7.22534(m/s)^2 = 0
V^2 = 7.22534(m/s)^2
V = 2.6879 m/s
It depends on the graphics, color, structure all that stuff for me to believe if the image is real or virtual
Hope I helped you
Answer:a. Magnetic dipole moment is 0.3412Am²
b. Torque is zero(0)N.m
Explanation: The magnetic dipole moment U is given as the product of the number of turns n times the current I times the area A
That is,
U = n*I*A
But Area A is given as pi*radius² since it is a circular coil
Radius given is 5cm converting to meter we divide by 100 so we have our radius to be 0.05m. So area A is
A = 3.142*(0.05)² =7.86*EXP {-3} m²
Current I is 2 A
Number of turns is 20
So magnetic dipole moment U is
U = 20*2*7.86*EXP {-3}=0.3142A.m²
b. Torque is given as the cross product of the magnetic field B and magnetic dipole moment U
Torque = B x U =B*U*Sine(theta)
But since the magnetic field is directed parallel to the plane of the coil from the question, it means that the angle between them is zero and sine zero is equals 0(zero) if you substitute that into the formula for torque you will find out that your torque would equals zero(0)N.m