The question appears to be incomplete.
I assume that we are to find the coefficient of static friction, μ, between the desk and the book.
Refer to the diagram shown below.
m = the mass of the book
mg = the weight of the book (g = acceleration due to gravity)
N = the normal reaction, which is equal to
N = mg cos(12°)
R = the frictional force that opposes the sliding down of the book. It is
R = μN = μmg cos(12°)
F = the component of the weight acting down the incline. It is
F = mg sin(12°)
Because the book is in static equilibrium (by not sliding down the plane), therefore
F = R
mg sin(12°) = μmg cos(12°)

Therefore, the static coefficient of friction is
μ = tan(12) = 0.213
Answer: μ = 0.21 (nearest tenth)
By US Fg u u high I’ll fucouoyog you go y DC oh dad dc Sc um c o CBC cyo FCC ztdA
Answer:
i think its A. hope this helps!
Answer:
(a) Workdone = -27601.9J
(b) Average required power = 1314.4W
Explanation:
Mass of hoop,m =40kg
Radius of hoop, r=0.810m
Initial angular velocity Winitial=438rev/min
Wfinal=0
t= 21.0s
Rotation inertia of the hoop around its central axis I= mr²
I= 40 ×0.810²
I=26.24kg.m²
The change in kinetic energy =K. E final - K. E initail
Change in K. E =1/2I(Wfinal² -Winitial²)
Change in K. E = 1/2 ×26.24[0-(438×2π/60)²]
Change in K. E= -27601.9J
(a) Change in Kinetic energy = Workdone
W= 27601.9J( since work is done on hook)
(b) average required power = W/t
=27601.9/21 =1314.4W
90 kilometers because you need to multiply 40 by 2 and then you get 80 and finally you add 10 and get 90 kilometers