That means that the amount of energy can only be certain numbers, as if
energy came in tiny packets, and the in-between amounts don't exist.
Another example of a measurement in nature that is quantized is
electric charge.
Answer:
0.43 grams is the maximum mass of sodium sulfate that could be produced by the chemical reaction.
Explanation:
Mass of sulfuric acid = 0.98 g
Moles of sulfuric acid = 
Mass of sodium hydroxide = 0.240 g
Moles of sodium hydroxide = 

According to reaction, 2 moles of sodium hydroxide reacts with 1 mole of sulfuric acid , then 0.0060 moles of sodium hydroxide will react with :
of sulfuric acid
As we can see that we have 0.010 moles of sulfuric acid but only 0.0030 moles of sulfuric acid will react which indicates that it is in excessive amount where as sodium hydroxide is in limiting amount.
So, amount of sodium sulfate to be formed will depend upon moles of sodium hydroxide.
According to reaction, 2 moles of sodium hydroxide gives with 1 mole of sodium sulfate , then 0.0060 moles of sodium hydroxide will give :
of sodium sulfate
Mass of 0.0030 moles of sodium sulfate :
0.0030 mol × 142 g/mol = 0.426 g ≈ 0.43 g
0.43 grams is the maximum mass of sodium sulfate that could be produced by the chemical reaction.
Answer:
Kc of reaction is 20.
Explanation:
The two proteins are X and Y.
The [X] = 1mM
[Y]=1mM
At equilibrium, [X] = 0.2mM [Y] = 0.2mM
we know that equilibrium constant is:
Kc=![\frac{[Products]}{[Reactants]}=\frac{[XY]}{[X][Y]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BProducts%5D%7D%7B%5BReactants%5D%7D%3D%5Cfrac%7B%5BXY%5D%7D%7B%5BX%5D%5BY%5D%7D)
[XY]= 1-0.20=0.80 mM
putting values:
Kc=
The mass of any substance will remain the same regardless of its state of matter. Using water as an example, its volume increases when it is boiled to a gas or when it is frozen from a liquid state to the solid state ice. The volume and temperature will change as it moves through the states of matter, however the amount of individual molecules of oxygen and hydrogen that form water will remain the same and this constitute mass.