Answer:
Explanation:
Assuming the squirrel is jumping off the ground, here's what we know but don't really know...
v₀ = 4.0 at 50.0°
So that's not really the velocity we are looking for. We are dealing with a max height problem, which is a y-dimension thing. Therefore, we need the squirrel's upward velocity, which is NOT 4.0 m/s. We find it in the following way:
which gives us that the upward velocity is
v₀ = 3.1 m/s
Moving on here's what we also know:
a = -9.8 m/s/s and
v = 0
Remember that at the very top of the parabolic path, the final velocity is 0. In order to find the max height of the squirrel, we need to know how long it took him to get there. We are using 2 of our 3 one-dimensional equations in this problem. To find time:
v = v₀ + at and filling in:
0 = 3.1 - 9.8t and
-3.1 = -9.8t so
t = .32 seconds.
Now that we know how long it took him to get to the max height, we use that in our next one-dimensional equation:
Δx =
and filling in:
Δx =
and using the rules for adding and subtracting sig fig's correctly, we can begin to simplify this:
Δx = .99 - .50 so
Δx = .49 meters
Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. This generalized the work of Georg Ohm and preceded the work of Maxwell.
Answer:
a. 
b. 
Explanation:
Using the triangle theorem both triangle the woman makes between the light so the rate of change of length can use geometry first

Solve to find the rate relation


Now the rate of the change rate


Finally the rate of her shadow moving


Answer:
0.0613°C
Explanation:
the given parameters are m=15gm=15×10⁻³ V₁=865m/s V₂=534m/s
the bullet moves with different kinetic energies before and after the penetration, therefore
Kinetic energy before - kinetic energy after = 1/2 × m × ( V₁² - V₂²)
=
× 15×10⁻³ × (865² - 534²)
= 3.47 × 10⁻³J
this loss in energy is transferred to the water, therefore
change in temperature = 
where c = heat capacity of water = 4.19 x 10^3
m = mass of water = 13.5 kg
= {3.47 × 10⁻³} / {13.5 x 4.19 x 10^3 }
=0.0613°C