-- From January 15 to February 6 is a period of 22 days.
-- The period of the full cycle of moon phases is 29.53 days.
-- So those dates represent (22/29.53) = 74.5% of a full cycle of phases.
-- That's almost exactly 3/4 of a full cycle, so on February 6, the moon would be almost exactly at <em>Third Quarter</em>. That's the <em>left half of a disk </em>(viewed from the northern hemisphere).
Answer:
The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Explanation:
hope it helps pls give me brainless
Answer:
a. 8.3 minutes average distance from earth to the sun
d. 93 miles or 150 million km
Explanation:
The distance between the earth and the sun is defined as an astronomical unit (AU). It takes 8.3 minutes to go from earth to the sun at the speed of light. That distance has a length of 150 million Kilometers or 93 miles.
It is common to see in planet charts that distance to the sun are compared in astronomical units. In the case of Mars is 1.524 AU away from the sun.
There's a very subtle thing going on here, one that could blow your mind.
Wherever we look in the universe, no matter what direction we look,
we see the light from distant galaxies arriving at our telescopes with
longer wavelengths than the light SHOULD have.
The only way we know of right now that can cause light waves to get
longer after they leave the source is motion of the source away from
the observer. The lengthening of the waves on account of that motion
is called the Doppler effect. (The answer to the question is choice-c.)
But that may not be the only way that light waves can get stretched. It's
the only way we know of so far, and so we say that the distant galaxies
are all moving away from us.
From that, we say the whole universe is expanding, and that right there is
one of the strongest observations that we explain with the Big Bang theory
of creation.
Now: If ... say tomorrow ... a competent Physicist discovers another way
for light waves to get stretched after they leave the source, then the whole
"expanding universe" idea is out the window, and probably the Big Bang
theory along with it !
Now that our mind has been blown, come back down to Earth with me,
and I'll give you something else to think about:
It's true that when we look at distant galaxies, we do see their light
arriving in our telescopes with longer wavelengths than it should have.
And then we use the Doppler effect to calculate how fast that galaxy
is moving away from us. That's all true. Astronomers are doing it
every day. I mean every night.
So here's the question for you to think about ... maybe even READ about:
When the light from a distant galaxy pours into our telescope, and we
look at it, and we measure its wavelength, and we find that the wavelength
is longer than it should be ... how do we know what it should be ? ? ?
Impulse = Change in momentum.
The ball was moving with a momentum of 0.45 * 22 = 9.9
The ball comes to rest in the receivers arm; this means the ball's final velocity = 0. So mv2 = 0.45 * 0
The magnitude of the impact is just the change in momentum. 9.9 - (0.45 * 0) = 9.9