<u>Answer:</u> The correct answer is the mass number of the most common isotope of the element is 24.
<u>Explanation:</u>
We are given:
An element having atomic number 12 is magnesium and atomic mass of the element is 24.305
The image corresponding will be 
The number '24.305' is the average atomic mass of magnesium element.
Average atomic mass is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:

Average atomic mass of magnesium = 24.305 amu
As, the average atomic mass of magnesium lies closer to the mass of Mg-24 isotope. This means that the relative abundance of this isotope is the highest of all the other isotopes.
The 'Mg-24' isotope is the most common isotope of the given element.
Hence, the correct answer is the mass number of the most common isotope of the element is 24.
Q: A
according to this formula, we can get the mole fraction of water (n):
P(solu) = n Pv(water)
when we have Pv(solu) = 22.8 and Pv(water) = 23.8 so by substitution:
22.8 = n * 23.8
n= 0.958
- we need to get the moles of glucose:
moles of water = 500 g(mass weight) / 18 (molar weight)= 27.7 mol
n = moles of water / ( moles of water + moles of glucose)
0.958 = 27.7 / ( 27.7+ moles of glucose)
0.958 moles of glucose + 26.5 = 27.7
0.968 moles of glucose = 1.2
moles of glucose = 1.253 mol
∴ the mass of glucose = no.of glucose moles x molar mass
= 1.253 x 180 = 225.5 g
Q: B
here we also need to get n (mole fraction of water )by using this formula:
Pv(solu) = n Pv(water)
when we have Pv(solu)=132 & Pv(water)=150 so, by substition:
132= n * 150
n = 0.88
so, mole fraction of solution = 1 - 0.88 = 0.12
and we can get after that the moles of water = (mass weight / molar mass)
- no.moles of water = 85 g / 18 g/mol = 4.7 moles
- total moles in solution = moles of water / moles fraction of water
= 4.7 / 0.88 = 5.34 moles
∴ moles of the solution = total moles in solu - moles of water
= 5.34 - 4.7 = 0.64 moles solute
∴ the molar mass of the solute = mass weight of solute / no.of moles of solute
= 53.8 / 0.64 = 84 g/mole
Q: C
moles of urea (NH2)2 CO = mass weight / molar mass
= 4.49 g / 60 g /mol
= 0.07 mol
moles of methanol = mass weight / molar mass
= 39.9 g / 32 g/mol = 1.25 mol
moles fraction of methanol = moles of methanol / (moles of methanol + moles of urea )
moles fraction of methanol = 1.25 / ( 1.25+0.07) = 0.95
by substitution in Pv formula we will be able to get the vapour pressure of the solu :
Pv(solu) = n P°v
Pv(solu) = 0.95 * 89 mm Hg
∴Pv(solu) = 84.55 mmHg
Shielding electrons are the electrons in the energy levels between the nucleus and the valence electrons. They are called "shielding" electrons because they "shield" the valence electrons from the force of attraction exerted by the positive charge in the nucleus. Hope this helps!!
They are both made up of the same protein called "histones".
Explanation:
equations to note:
density= mass/volume
mass= volume *density
volume= mass/density
you have a volume- 8.33cm3
you have a density- 2.07 g/cm3
Answer:
8.33cm3 * 2.07g/cm3= 17.24g
mass= 17.24g