Can't really plot a graph here for question 1.
2a) The car speeds up from A to B. The car travels at a constant speed from B to C. The car slows down to a stop from C to D.
b) From the graph, at 10 seconds, the car is moving at 20 m/s.
Answer:
"Longitudinal wave" is the appropriate answer.
Explanation:
- Generating waves whenever the form of communication being displaced in a similar direction as well as in the reverse way of the wave's designated points, could be determined as Longitudinal waves.
- A wave running the length of something like a Slinky stuffed animal, which expands as well as reduces the spacing across spindles, produces a fine image or graphic.
The speed of bullet =
850 m/s
Distance given = 1 km = 1000m
S = D/t
t • S = D/t • t
St = D
St/S = D/S
t = D/S
t = 1000m/850m/s
t = 1.176 s
It will take the bullet 1.176 or about 1.18 seconds to go 1 km.
Answer:
a. I = 0.76 A
b. Z = 150.74
c. RL₁ = 34.41 , RL₂ = 602.58
d. RL₂ = 602.58
Explanation:
V₁ = 116 V , R₁ = 77.0 Ω , Vc = 364 V , Rc = 473 Ω
a.
Using law of Ohm
V = I * R
I = Vc / Rc = 364 V / 473 Ω
I = 0.76 A
b.
The impedance of the circuit in this case the resistance, capacitance and inductor
V = I * Z
Z = V / I
Z = 116 v / 0.76 A
Z = 150.74
c.
The reactance of the inductor can be find using
Z² = R² + (RL² - Rc²)
Solve to RL'
RL = Rc (+ / -) √ ( Z² - R²)
RL = 473 (+ / -) √ 150.74² 77.0²
RL = 473 (+ / -) (129.58)
RL₁ = 34.41 , RL₂ = 602.58
d.
The higher value have the less angular frequency
RL₂ = 602.58
ω = 1 / √L*C
ω = 1 / √ 602.58 * 473
f = 285.02 Hz