The similar circles P and Q can be made equal by dilation and translation
- The horizontal distance between the center of circles P and Q is 11.70 units
- The scale factor of dilation from circle P to Q is 2.5
<h3>The horizontal distance between their centers?</h3>
From the figure, we have the centers to be:
P = (-5,4)
Q = (6,8)
The distance is then calculated using:
d = √(x2 - x1)^2 + (y2 - y1)^2
So, we have:
d = √(6 + 5)^2 + (8 - 4)^2
Evaluate the sum
d = √137
Evaluate the root
d = 11.70
Hence, the horizontal distance between the center of circles P and Q is 11.70 units
<h3>The scale factor of dilation from circle P to Q</h3>
We have their radius to be:
P = 2
Q = 5
Divide the radius of Q by P to determine the scale factor (k)
k = Q/P
k = 5/2
k = 2.5
Hence, the scale factor of dilation from circle P to Q is 2.5
Read more about dilation at:
brainly.com/question/3457976
Answer:
4.27%
Step-by-step explanation:
We have been given that college students average 8.6 hours of sleep per night with a standard deviation of 35 minutes. We are asked to find the probability of college students that sleep for more than 9.6 hours.
We will use z-score formula to solve our given problem.

z = z-score,
x = Random sample score,
= Mean,
= Standard deviation.
Before substituting our given values in z-score formula, we need to convert 35 minutes to hours.




Now, we need to find
.
Using formula
, we will get:

Using normal distribution table, we will get:



Therefore, 4.27% of college students sleep for more than 9.6 hours.
Answer: 2
Step-by-step explanation: