Answer:
pH = 3.49
Explanation:
We have a buffer system formed by a weak acid (HNO₂) and its conjugate base (NO₂⁻ coming from KNO₂). We can calculate the pH of a buffer ssytem using the Henderson-Hasselbach equation.
pH = pKa + log [base] / [acid]
pH = -log Ka + log [NO₂⁻] / [HNO₂]
pH = -log 4.50 × 10⁻⁴ + log 0.290 M / 0.210 M
pH = 3.49
It depends on the number of valence electrons required to make octet or duplet( in case of H)
. For example, Nitrogen(atomic number = 7) has electronic configuration(2,5) which means nitrogen has 5 valence electrons and requires 3 more electrons to complete its octet. After gaining 3 electrons from atoms of an element with less electronegativity than N, it forms nitride ion (
).
Hope this helps.
Answer:
1.98x10⁻¹² kg
Explanation:
The <em>energy of a photon</em> is given by:
h is Planck's constant, 6.626x10⁻³⁴ J·s
c is the speed of light, 3x10⁸ m/s
and λ is the wavelenght, 671 nm (or 6.71x10⁻⁷m)
- E = 6.626x10⁻³⁴ J·s * 3x10⁸ m/s ÷ 6.71x10⁻⁷m = 2.96x10⁻¹⁹ J
Now we multiply that value by <em>Avogadro's number</em>, to <u>calculate the energy of 1 mol of such protons</u>:
- 1 mol = 6.023x10²³ photons
- 2.96x10⁻¹⁹ J * 6.023x10²³ = 1.78x10⁵ J
Finally we <u>calculate the mass equivalence</u> using the equation:
- m = 1.78x10⁵ J / (3x10⁸ m/s)² = 1.98x10⁻¹² kg